首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Free radical research》2013,47(1):205-210
Using the direct method of pulse radiolysis to determine the superoxide dismutase like activity of copper(II) cimetidine complexes, it was found that the reaction rate constant with O?2, kcat, was (8.5 ± 0.5) × 108 M?1s?1 independent of the cimetidine concentrations present in excess of 50–200 μM over the metal. The results suggest that either the 1:1 ligand to metal complex does not catalyze O?2 dismutation at a comparable rate to that of the 2:1 complex, or that the stability constant of the last species is much higher than that determined earlier by Kimura el al.,1 and only the 2:1 species is present in the solutions. With the indirect methods of cytochrome c and NBT for determining the ability of these complexes to catalyze O?2 dismutation, these compounds exhibited a much lower SOD activity. and kcat was determined to be (5.0 ± 0.3) × 106 and (7.± 0.4) × 101 M?1s?1. respectively using the two assays.  相似文献   

2.
Albumin is generally regarded as an inert protein with no enzyme activity. However, albumin has esterase activity as well as aryl acylamidase activity. A new acetanilide substrate, o-nitrotrifluoroacetanilide (o-NTFNAC), which is more reactive than the classical o-nitroacetanilide, made it possible to determine the catalytic parameters for hydrolysis by fatty-acid free human serum albumin. Owing to the low enzymatic activity of albumin, kinetic studies were performed at high albumin concentration (0.075 mM). The albumin behavior with this substrate was Michaelis-Menten like. Kinetic analysis was performed according to the formalism used for catalysis at high enzyme concentration. This approach provided values for the turnover and dissociation constant of the albumin-substrate complex: kcat = 0.13 ± 0.02 min ? 1 and Ks = 0.67 ± 0.04 mM. MALDI-TOF experiments showed that unlike the ester substrate p-nitrophenyl acetate, o-NTFNAC does not form a stable adduct (acetylated enzyme). Kinetic analysis and MALDI-TOF experiments demonstrated that hydrolysis of o-NTFNAC by albumin is fully rate-limited by the acylation step (kcat = k2). Though the aryl acylamidase activity of albumin is low (kcat/Ks = 195 M? 1min? 1), because of its high concentration in human plasma (0.6–1 mM), albumin may participate in hydrolysis of aryl acylamides through second-order kinetics. This suggests that albumin may have a role in the metabolism of endogenous and exogenous aromatic amides, including drugs and xenobiotics.  相似文献   

3.
The nearly 50,000 known Nudix proteins have a diverse array of functions, of which the most extensively studied is the catalyzed hydrolysis of aberrant nucleotide triphosphates. The functions of 171 Nudix proteins have been characterized to some degree, although physiological relevance of the assayed activities has not always been conclusively demonstrated. We investigated substrate specificity for eight structurally characterized Nudix proteins, whose functions were unknown. These proteins were screened for hydrolase activity against a 74‐compound library of known Nudix enzyme substrates. We found substrates for four enzymes with kcat/Km values >10,000 M?1 s?1: Q92EH0_LISIN of Listeria innocua serovar 6a against ADP‐ribose, Q5LBB1_BACFN of Bacillus fragilis against 5‐Me‐CTP, and Q0TTC5_CLOP1 and Q0TS82_CLOP1 of Clostridium perfringens against 8‐oxo‐dATP and 3'‐dGTP, respectively. To ascertain whether these identified substrates were physiologically relevant, we surveyed all reported Nudix hydrolytic activities against NTPs. Twenty‐two Nudix enzymes are reported to have activity against canonical NTPs. With a single exception, we find that the reported kcat/Km values exhibited against these canonical substrates are well under 105 M?1 s?1. By contrast, several Nudix enzymes show much larger kcat/Km values (in the range of 105 to >107 M?1 s?1) against noncanonical NTPs. We therefore conclude that hydrolytic activities exhibited by these enzymes against canonical NTPs are not likely their physiological function, but rather the result of unavoidable collateral damage occasioned by the enzymes' inability to distinguish completely between similar substrate structures. Proteins 2016; 84:1810–1822. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   

4.
Abstract

Carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the α-, β-, γ-, δ- and ζ-CAs are ubiquitous metalloenzymes present in prokaryotes and eukaryotes. CAs started to be investigated in detail only recently in pathogenic bacteria, in the search for antibiotics with a novel mechanism of action, since it has been demonstrated that in many such organisms they are essential for the life cycle of the organism. CA inhibition leads to growth impairment or growth defects in several pathogenic bacteria. The microbiota of the human oral mucosa consists of a myriad of bacterial species, Porphyromonas gingivalis being one of them and the major pathogen responsible for the development of chronic periodontitis. The genome of P. gingivalis encodes for a β- and a γ-CAs. Recently, our group purified the recombinant γ-CA (named PgiCA) which was shown to possess a significant catalytic activity for the reaction that converts CO2 to bicarbonate and protons, with a kcat of 4.1?×?105?s?1 and a kcat/Km of 5.4?×?107?M?1?×?s?1. We have also investigated its inhibition profile with a range of inorganic anions such as thiocyanate, cyanide, azide, hydrogen sulfide, sulfamate and trithiocarbonate. Here, we describe the cloning, purification and kinetic parameters of the other class of CA identified in the genome of P. gingivalis, the β-CA, named PgiCAb. This enzyme has a good catalytic activity, with a kcat of 2.8?×?105?s?1 and a kcat/Km of 1.5?×?107?M?1?×?s?1. PgiCAb was also inhibited by the clinically used sulfonamide acetazolamide, with an inhibition constant of 214?nM. The role of CAs as possible virulence factors of P. gingivalis is poorly understood at the moment but their good catalytic activity and the fact that they might be inhibited by a large number of compounds, which may pave the way for finding inhibitors with antibacterial activity that may elucidate these phenomena and lead to novel antibiotics.  相似文献   

5.
An aspartic protease that is significantly produced by baculovirus-infected Spodoptera frugiperda Sf9 insect cells was purified to homogeneity from a growth medium. To monitor aspartic protease activity, an internally quenched fluoresce (IQF) substrate specific to cathepsin D was used. The purified aspartic protease showed a single protein band on SDS–PAGE with an apparent molecular mass of 40 kDa. The N-terminal amino acid sequence of the enzyme had a high homology to a Bombyx mori aspartic protease. The enzyme showed greatest affinity for the IQF substrate at pH 3.0 with a K m of 0.85 μM. The k cat and k cat?K m values were 13 s?1 and 15 s?1 μM?1 respectively. Pepstatin A proved to be a potent competitive inhibitor with inhibitor constant, K i, of 25 pM.  相似文献   

6.
Aldehyde dehydrogenase ST0064, the closest paralog of previously characterized allosteric non-phosphorylating glyceraldehyde-3-phosphate (GAP) dehydrogenase (GAPN, ST2477) from a thermoacidophilic archaeon, Sulfolobus tokodaii, was expressed heterologously and characterized in detail. ST0064 showed remarkable activity toward succinate semialdehyde (SSA) (K m of 0.0029 mM and k cat of 30.0 s?1) with no allosteric regulation. Activity toward GAP was lower (K m of 4.6 mM and k cat of 4.77 s?1), and previously predicted succinyl-CoA reductase activity was not detected, suggesting that the enzyme functions practically as succinate semialdehyde dehydrogenase (SSADH). Phylogenetic analysis indicated that archaeal SSADHs and GAPNs are closely related within the aldehyde dehydrogenase superfamily, suggesting that they are of the same origin.  相似文献   

7.
《Free radical research》2013,47(11):1300-1310
Abstract

Hypotaurine and cysteine sulfinic acid are known to be readily oxidized to the respective sulfonates, taurine and cysteic acid, by several oxidative agents that may be present in biological systems. In this work, the relevance of both the carbonate anion and nitrogen dioxide radicals in the oxidation of hypotaurine and cysteine sulfinic acid has been explored by the peroxidase activity of Cu,Zn superoxide dismutase (SOD) and by pulse radiolysis. The extent of sulfinate oxidation induced by the system SOD/H2O2 in the presence of bicarbonate (CO3?– generation), or nitrite (?NO2 generation) has been evaluated. Hypotaurine is efficiently oxidized by the carbonate radical anion generated by the peroxidase activity of Cu,Zn SOD. Pulse radiolysis studies have shown that the carbonate radical anion reacts with hypotaurine more rapidly (k = 1.1 × 109 M?1s?1) than nitrogen dioxide (k = 1.6 × 107 M?1s?1). Regarding cysteine sulfinic acid, it is less reactive with the carbonate radical anion (k = 5.5 × 107 M?1s?1) than hypotaurine. It has also been observed that the one-electron transfer oxidation of both sulfinates by the radicals is accompanied by the generation of transient sulfonyl radicals (RSO2?). Considering that the carbonate radical anion could be formed in vivo at high level from bicarbonate, this radical can be included in the oxidants capable of performing the last metabolic step of taurine biosynthesis. Moreover, the protective effect exerted by hypotaurine and cysteine sulfinate on the carbonate radical anion-mediated tyrosine dimerization indicates that both sulfinates have scavenging activity towards the carbonate radical anion. However, the formation of transient reactive intermediates during sulfinate oxidation by carbonate anion and nitrogen dioxide radical may at the same time promote oxidative reactions.  相似文献   

8.
A recombinant carbonic anhydrase (CA, EC 4.2.1.1) from the soil-dwelling bacterium Enterobacter sp. B13 was cloned and purified by Co2+ affinity chromatography. Bioinformatic analysis showed that the new enzyme (denominated here B13-CA) belongs to the β-class CAs and to possess 95% homology with the ortholog enzyme from Escherichia coli encoded by the can gene, whereas its sequence homology with the other such enzyme from E. coli (encoded by the cynT gene) was of 33%. B13-CA was characterized kinetically as a catalyst for carbon dioxide hydration to bicarbonate and protons. The enzyme shows a significant catalytic activity, with the following kinetic parameters at 20?°C and pH of 8.3: kcat of 4.8?×?105?s?1 and kcat/Km of 5.6?×?107 M?1?×?s?1. This activity was potently inhibited by acetazolamide which showed a KI of 78.9?nM. Although only this compound was investigated for the moment as B13-CA inhibitor, further studies may reveal new classes of inhibitors/activators of this enzyme which may show biomedical or environmental applications, considering the posssible role of this enzyme in CaCO3 biomineralization processes.  相似文献   

9.
A carbonic anhydrase (CA, EC 4.2.1.1) from red blood cells of pigeons (Columba livia var. domestica), clCA, was purified to homogeneity. Its kinetic parameters for the CO2 hydration reaction were measured. With a kcat/Km of 1.1?×?108 M?1 s?1, and a kcat of 1.3?×?106 s?1, clCA has a high activity, similar to that of the human isoform hCA II. A group of 25 aromatic/heterocyclic sulfonamides incorporating the sulfanilamide, homosulfanilamide, benzene-1,3-disulfonamide, and acetazolamide scaffolds showed variable inhibitory activity against the pigeon enzyme, with KIs in the range of 1.9–3460?nM. Red blood cells of pigeons, like those of ostriches, contain thus just one CA isoform, unlike the blood of mammals, which normally contain two isoforms, one of low (CA I-like) and one of very high activity (CA II-like). However, from the sulfonamide inhibition viewpoint, the pigeon enzyme was more similar to hCA II than to the ostrich enzyme.  相似文献   

10.
11.
Carbonic anhydrases (CAs, EC 4.2.1.1) belonging to α-, β-, γ- and ζ-classes and from various organisms, ranging from the bacteria, archaea to eukarya domains, were investigated for their esterase/phosphatase activity with 4-nitrophenyl acetate, 4-nitrophenyl phosphate and paraoxon as substrates. Only α-CAs showed esterase/phosphatase activity, whereas enzymes belonging to the β-, γ- and ζ-classes were completely devoid of such activity. Paraoxon, the metabolite of the organophosphorus insecticide parathione, was a much better substrate for several human/murine α-CA isoforms (CA I, II and XIII), with kcat/KM in the range of 2681.6–4474.9 M?1 s?1, compared to 4-nitrophenyl phosphate (kcat/KM of 14.9–1374.4 M?1 s?1).  相似文献   

12.
Isocitrate dehydrogenase (IDH) catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate with NAD(P) as a cofactor in the tricarboxylic acid cycle. As a housekeeping protein in Helicobacter pylori, IDH was considered as a possible candidate for serological diagnostics and detection. Here, we identified a new icd gene encoding IDH from H. pylori strain SS1. The recombinant H. pylori isocitrate dehydrogenase (HpIDH) was cloned, expressed, and purified in E. coli system. The enzymatic characterization of HpIDH demonstrates its activity with k cat of 87 s?1, K m of 124 μM and k cat/K m of 7 × 105 M?1s?1 toward isocitrate, k cat of 80 s?1, K m of 176 μM and k cat/K m of 4.5 × 105 M?1s?1 toward NADP. The optimum pH of the enzyme activity is around 9.0, and the optimum temperature is around 50 °C. This current work is expected to help better understand the features of HpIDH and provide useful information for H. pylori serological diagnostics and detection.  相似文献   

13.
Abstract

Lipases are one of the most important catalysts for several industries such as detergent, dairy, and textile industry due to their bio-catalytic ability in aqueous and non-aqueous media. Stability to extreme conditions is an important property since it makes enzymes suitable to several industrial processes. In this study, lipase producing soil bacteria were screened and identified with 16S rDNA sequencing. A new hyper-thermophilic lipase named as Bacillus subtilis LP2 isolate was partially purified by ammonium sulphate precipitation with 17.8-fold purification and 583?U/mg specific activity. Maximum activity was exhibited at pH 7 and 80?°C with the substrate tween 80?KM and Vmax values were calculated as 18.3?mM and 680?U/mg with a catalytic efficiency (kcat/KM) of 307?s?1M?1. These results indicate that lipase from Bacillus subtilis LP2 can be a valuable candidate for industrial applications such as organic synthesis and fats and oils industry due to their efficient catalysis in higher temperatures.  相似文献   

14.
Hydrolysis of Lys-Arg-Pro-Gly-Phe-Ser-Pro-Phe-Arg-Ser-Val-Gln-Val-Ser by trypsin (EC 3.4.21.4) yields lysyl-bradykinin by rupture of the Arg-Ser bond. The kcat/Km value found for this hydrolysis was 1.4 × 1010 M?1 × sec?1, which is 10?5-fold higher than that obtained for the hydrolysis of bradykinyl-Ser-Val-Gln-Val-Ser. This effect was abolished by acetylation of the lysine amino groups of the pentadecapeptide. Contrarywise, the esterolytic activity of trypsin on bradykinin methyl ester was the same as in lysyl-bradykinin methyl ester. The high susceptibility of Lys-bradykinyl-Ser-Val-Gln-Val-Ser to trypsin catalysis is striking because: a) it constitutes the first example that an amino acid residue distant from the bond split may enhance trypsin catalysis; b) this pentadecapeptide is the best synthetic substrate so far described for trypsin and c) the value of kcat/Km for its hydrolysis is unusually high for proteases.  相似文献   

15.
D-Lactate dehydrogenase (D-LDH) from Pediococcus pentosaceus ATCC 25745 was found to produce D-3-phenyllactic acid from phenylpyruvate. The optimum pH and temperature for enzyme activity were pH 5.5 and 45 °C. The Michaelis-Menten constant (K m), turnover number (k cat), and catalytic efficiency (k cat?K m) values for the substrate phenylpyruvate were estimated to be 1.73 mmol/L, 173 s?1, and 100 (mmol/L)?1 s?1 respectively.  相似文献   

16.
Mitochondrial carbonic anhydrase VA (CAVA) catalyzes the hydration of carbon dioxide to produce proton and bicarbonate which is primarily expressed in the mitochondrial matrix of liver, and involved in numerous physiological processes including lipogenesis, insulin secretion from pancreatic cells, ureagenesis, gluconeogenesis, and neuronal transmission. To understand the effect of pH on the structure, function, and stability of CAVA, we employed spectroscopic techniques such as circular dichroism, fluorescence, and absorbance measurements in wide range of pH (from pH 2.0 to pH 11.5). CAVA showed an aggregation at acidic pH range from pH 2.0 to pH 5.0. However, it remains stable and maintains its secondary structure in the pH range, pH 7.0–pH 11.5. Furthermore, this enzyme has an appreciable activity at more than pH 7.0 (7.0 < pH ≤ 11.5) with maximum activity at pH 9.0. The maximal values of kcat and kcat/Km at pH 9.0 are 3.7?×?106 s?1 and 5.5?×?107 M?1 s?1, respectively. However, this enzyme loses its activity in the acidic pH range. We further performed 20-ns molecular dynamics simulation of CAVA to see the dynamics at different pH values. An excellent agreement was observed between in silico and in vitro studies. This study provides an insight into the activity of CAVA in the pH range of subcellular environment.  相似文献   

17.
We cloned, expressed, purified, and determined the kinetic constants of the recombinant α-carbonic anhydrase (rec-MgaCA) identified in the mantle tissue of the bivalve Mediterranean mussel, Mytilus galloprovincialis. In metazoans, the α-CA family is largely represented and plays a pivotal role in the deposition of calcium carbonate biominerals. Our results demonstrated that rec-MgaCA was a monomer with an apparent molecular weight of about 32?kDa. Moreover, the determined kinetic parameters for the CO2 hydration reaction were kcat?=??4.2?×?105?s?1 and kcat/Km of 3.5?×?107?M?1 ×s?1. Curiously, the rec-MgaCA showed a very similar kinetic and acetazolamide inhibition features when compared to those of the native enzyme (MgaCA), which has a molecular weight of 50?kDa. Analysing the SDS-PAGE, the protonography, and the kinetic analysis performed on the native and recombinant enzyme, we hypothesised that probably the native MgaCA is a multidomain protein with a single CA domain at the N-terminus of the protein. This hypothesis is corroborated by the existence in mollusks of multidomain proteins with a hydratase activity. Among these proteins, nacrein is an example of α-CA multidomain proteins characterised by a single CA domain at the N-terminus part of the entire protein.  相似文献   

18.
A laccase from the culture filtrate of Phellinus linteus MTCC-1175 has been purified to homogeneity. The method involved concentration of the culture filtrate by ammonium sulphate precipitation and an anion exchange chromatography on DEAE-cellulose. The SDS-PAGE and native-PAGE gave single protein band indicating that the enzyme preparation was pure. The molecular mass of the enzyme determined from SDS-PAGE analysis was 70 kDa. Using 2.6-dimethoxyphenol, 2.2′[azino-bis-(3-ethylbonzthiazoline-6-sulphonic acid) diammonium salt] (ABTS) and 4-hydroxy-3,5-dimethoxybenzaldehyde azine as the substrates, the K m, k cat and k cat/K m values of the laccase were found to be 160 μM, 6.85 s?1, 4.28 × 104 M?1 s?1, 42 μM, 6.85 s?1, 16.3 × 104 M?1 s?1 and 92 μM, 6.85 s?1, 7.44 × 104 M?1 s?1, respectively. The pH and the temperature optima of the P. linteus MTCC-1175 laccase were 5.0 and 45°C, respectively. The activation energy for thermal denaturation of the enzyme was 38.20 kJ/mole/K. The enzyme was the most stable at pH 5.0 after 1 h reaction. In the presence of ABTS as the mediator, the enzyme transformed toluene, 3-nitrotoluene and 4-chlorotoluene to benzaldehyde, 3-nitrobenzaldehyde and 4-chlorobenzaldehyde, respectively.  相似文献   

19.
It is demonstrated that cyanobacteria (both azotrophic and non‐azotrophic) contain heme b oxidoreductases that can convert chlorite to chloride and molecular oxygen (incorrectly denominated chlorite ‘dismutase’, Cld). Beside the water‐splitting manganese complex of photosystem II, this metalloenzyme is the second known enzyme that catalyses the formation of a covalent oxygen–oxygen bond. All cyanobacterial Clds have a truncated N‐terminus and are dimeric (i.e. clade 2) proteins. As model protein, Cld from Cyanothece sp. PCC7425 (CCld) was recombinantly produced in Escherichia coli and shown to efficiently degrade chlorite with an activity optimum at pH 5.0 [kcat 1144 ± 23.8 s?1, KM 162 ± 10.0 μM, catalytic efficiency (7.1 ± 0.6) × 106 M?1 s?1]. The resting ferric high‐spin axially symmetric heme enzyme has a standard reduction potential of the Fe(III)/Fe(II) couple of ?126 ± 1.9 mV at pH 7.0. Cyanide mediates the formation of a low‐spin complex with kon = (1.6 ± 0.1) × 105 M?1 s?1 and koff = 1.4 ± 2.9 s?1 (KD ~ 8.6 μM). Both, thermal and chemical unfolding follows a non‐two‐state unfolding pathway with the first transition being related to the release of the prosthetic group. The obtained data are discussed with respect to known structure–function relationships of Clds. We ask for the physiological substrate and putative function of these O2‐producing proteins in (nitrogen‐fixing) cyanobacteria.  相似文献   

20.
The use of 6-(N-acetyl-L -phenylalanyl)-aminoluciferin as a novel substrate for α-chymotrypsin has been demonstrated. The kinetic parameters determined are KM = 0.38mmol/L, kcat = 6.5 s?1 and kcat/kM = 17,100 (L/mols). The test principle of the coupled assay is the release of aminoluciferin by enzymatic cleavage of 6-(N-acetyl-L -phenylalanyl)-aminoluciferin. Aminoluciferin is oxidized, with light emission, by firefly luciferase (Photinus pyralis) and can be quantified in a luminometric assay. The detection limit for chymotrypsin was found to be 0.3 ng per assay. 6-(N-acetyl-L -phenylalanyl)-aminoluciferin has been synthesized as an example for a new class of highly sensitive substrates. By modification of the peptide residue these new substrates may be suitable for ultrasensitive detection of different proteinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号