首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It was investigated to what extent isolated, monomeric and polymeric carbohydrates as well as cartilage specimens are affected by hydroxyl radicals generated by γ-irradiation or Fenton reaction and what products can be detected by means of NMR spectroscopy. Resonances of all protons in glucose and other monosac-charides as well as carbon resonances in 13C-enriched glucose were continuously diminished upon γ-irradiation. Formate and malondialdehyde were found as NMR detectable products in irradiated glucose solutions under physiologically relevant (aerated) conditions. In polysaccharide solutions (e.g. hyaluronic acid) γ-irradiation and also treatment with the Fenton reagent caused first an enhancement of resonances according to mobile N-acetyl groups at 2.02 ppm. This indicates a breakdown of glycosidic bonds in polysac-charides. Using higher radiation doses or higher concentrations of the Fenton reagent formate was also detected. The same sequence of events was observed upon treatment of bovine nasal cartilage with the Fenton reagent. First, glycosidic linkages in cartilage polysaccharides were cleaved and subsequently formate was formed. In contrast, collagen of cartilage was affected only to a very low extent. Thus, HO-radicals caused the same action on cartilage as on isolated polymer solutions, inducing a fragmentation of polysaccharides and the formation of formate.  相似文献   

2.
A new series of metal ligands containing the 1,3-dimethyl-6-amino-5-nitrosouracil moiety has been synthesized and they have been studied as potential inhibitors of iron-dependent lipid peroxidation. For this purpose, these new derivatives have been tested in the Fenton induced deoxyribose degradation assay, which allows a quantitative measurement of their inhibitory effect towards hydroxyl radical generation. When iron(II) is complexed by these ligands, a strong inhibition of deoxyribose degradation is observed, especially in the case of tris-[2-(1,3-dimethyl-5-nitrosouracil-6-yl)aminoethyl] amine (5). This inhibitory effect is clearly related to a specific complexation of iron(II) and is not due to the direct scavenging of hydroxyl radical by the ligand. Inhibition of the iron mediated Fenton reaction presumably results from inactivation of the reactivity of the metal center towards hydrogen peroxide. These derivatives, as well as long alkyl chain substituted nitrosouracils were evaluated in the protection of biological membranes against lipid peroxidation (induced by iron(II)/ dihydroxyfumaric acid and determined with the 2-thiobarbituric acid test). Ligand 5 inhibited lipid peroxidation at a rate similar to Desferal (desferrioxamine B) and slightly higher than bathophenanthroline sulphonate (BPS), which are respectively good iron(III) and iron(II) chelators. When covalently bound with a long alkyl chain, the increase of lipophilic character of the ligand allows its location near the mitochondrial membrane, where lipid peroxidation occurs. Lower concentrations (IC50 = 4 μM) are then necessary to inhibit lipid peroxidation. This IC50 concentration should be compared to those obtained for Trolox (IC50 = 3 μM) or the 21-aminosteroid U74500A (IC50 = 1 μM) described previously.  相似文献   

3.
The competition method in which the Fenton reaction is employed as an OH radical generator and deoxyribose as a detecting molecule, has been used to determine the rate constants for reactions of the OH radical with its scavengers. Nonlinear competition plots were obtained for those scavengers which reacted with the Fenton reagents (Fe2+ or H2O2). Ascorbic acid is believed to overcome this problem. We have investigated the kinetics of deoxyribose degradation by -OH radicals generated by the Fenton reaction in the presence of ascorbic acid, and observed that the inclusion of ascorbic acid in the Fenton system greatly increased the rate of OH radical generation. As a result, the interaction between some scavengers and the Fenton reagents became negligeable and linear competition plots of A7A vs scavenger concentrations were obtained. The effects of experimental conditions such as, the concentrations of ascorbic acid, deoxyribose, H2O2 and Fe2+-EDTA, the EDTA/Fe2+ ratio as well as the incubation time, on the deoxyribose degradation and the determination of the rate constant for mercaptoethanol chosen as a reference compound were studied. The small standard error, (6.76± 0.21) ±' 109M-1s-1 observed for the rate constant values for mercaptoethanol determined under 13 different experimental conditions, indicates the latter did not influence the rate constant determination. This is in fact assured by introducing a term, kx, into the kinetic equation. This term represents the rate of-OH reactions with other reagents such as ascorbic acid, Fe2+-EDTA, H2O2 etc. The agreement of the rate constants obtained in this work with that determined by pulse radiolysis techniques for cysteine, thiourea and many other scavengers, suggests that this simple competition method is applicable to a wide range of compounds, including those which react with the Fenton reagents and those whose solubility in water is low.  相似文献   

4.
When a variety of ferric chelates are reacted with hydrogen peroxide in phosphate buffer deoxyribose is damaged and this damage is protected against by formate, thiourea and mannitol. Damage done by ferric complexes of citrate, EDTA, NTA, EGTA and HEDA is substantially inhibited by superoxide dismutase (SOD) whereas complexes of PLA. ADP and CDTA are moderately inhibited by SOD. The effects of SOD argue against hydrogen peroxide acting as a reductant in Fenton chemistry driven by ferric complexes and hydrogen peroxide. EDTA has proved to be a useful model for Fenton chemistry that is inhibited by SOD although, it is not unique in this respect.  相似文献   

5.
Hellebrin and transvaalin are two naturally occurring saponins with biological activity. In the present paper, we describe a high yielding route to the synthesis and coupling of their shared glycone, scillabiose, to a model steroid. A convergent coupling strategy utilizing a scillabiose-based glycosyl donor was devised for the glycosylation. This convergent approach is appealing due to its high efficiency and simple deprotection procedure and may find further use in total synthesis of naturally occurring saponins and related compounds sharing the same glycone. Due to the widespread occurrence of this glycone in nature, the complete NMR spectroscopic characterization of all compounds prepared herein is provided as reference material. In addition, glycosylations were performed with the monosaccharide constituents of scillabiose, thereby providing a limited series of glycosylated steroids for potential future evaluation of the effects of the glycone on the overall biological activity.  相似文献   

6.
Tetracycline antibiotics caused the degradation of carbohydrate in the presence of a ferric salt at pH 7.4. This degradation appeared to involve hydroxyl radicals since the damage was substantially reduced by the presence of catalase, superoxide dismutase, scavengers of the hydroxyl radical and metal chelators. Similarly, the tetracycline antibiotics in the presence of a ferric salt greatly stimulated the peroxidation of liposomal membranes. This damage, which did not implicate the hydroxyl radical, was significantly reduced by the addition of chain-breaking antioxidants and metal chelators. Only copper salts in the presence of tetracycline antibiotics, however, caused substantial damage to linear duplex DNA. Studies with inhibitors suggested that damage to DNA did involve hydroxyl radicals.  相似文献   

7.
Metabolism of ethanol to 1-hydroxyethyl radicals by rat liver microsomes was studied with three nitrone spin trapping agents (POBN, PBN, and DMPO) under essentially comparable conditions. The data indicate that POBN was the superior spin trapping agent for 1-hydroxyethyl radicals, and that DMPO was least efficient. Addition of deferoxamine completely prevented detection of 1-hydroxyethyl radicals with PBN or DMPO, but caused only 50% decrease in EPR signals when POBN was the spin trap. However, superoxide dismutase only decreased 1-hydroxyethyl radical formation when POBN was the spin trap. Other experiments demonstrated that POBN was the most effective of these nitrones for reduction of Fe(III) in aqueous solutions. Furthermore, 1-hydroxyethyl radical adducts were formed when POBN was added to mixtures of ethanol, phosphate buffer, POBN and FeCl3, but this effect did not occur with either PBN or DMPO. Thus, these data indicate that undesirable effects of POBN on iron chemistry may influence results of spin trapping experiments, and complicate interpretation of the resulting data.  相似文献   

8.
《Free radical research》2013,47(4):213-222
Metabolism of ethanol to 1-hydroxyethyl radicals by rat liver microsomes was studied with three nitrone spin trapping agents (POBN, PBN, and DMPO) under essentially comparable conditions. The data indicate that POBN was the superior spin trapping agent for 1-hydroxyethyl radicals, and that DMPO was least efficient. Addition of deferoxamine completely prevented detection of 1-hydroxyethyl radicals with PBN or DMPO, but caused only 50% decrease in EPR signals when POBN was the spin trap. However, superoxide dismutase only decreased 1-hydroxyethyl radical formation when POBN was the spin trap. Other experiments demonstrated that POBN was the most effective of these nitrones for reduction of Fe(III) in aqueous solutions. Furthermore, 1-hydroxyethyl radical adducts were formed when POBN was added to mixtures of ethanol, phosphate buffer, POBN and FeCl3, but this effect did not occur with either PBN or DMPO. Thus, these data indicate that undesirable effects of POBN on iron chemistry may influence results of spin trapping experiments, and complicate interpretation of the resulting data.  相似文献   

9.
In the present paper, a direct quenching of radical species by a number of synthesized nitrosoaryl 1,4-dihydropyridines and their parent nitroaryl 1,4-dihydropyridines was determined in aqueous media at pH 7.4. These two series of compounds were compared with the C-4 unsubstituted 1,4-dihydropyridines derivatives and the corresponding C-4 aryl substituted 1,4-dihydropyridines derivatives. Kinetic rate constants were assessed by UV-Vis spectroscopy. Nitrosoaryl derivatives were more reactive than the parent nitroaryl 1,4-dihydropyridines.

Our results strongly support the assumption that the reactivity between the synthesized 1,4-dihydropyridines derivatives with alkylperoxyl radicals involves electron transfer reactions, which is documented by the presence of pyridine as final product of reaction and the complete oxidation of the nitroso group to give rise the nitro group in the case of the nitrosoaryl 1,4-dihydropyridines derivatives.  相似文献   

10.
The X-ray structure of lysozyme from bacteriophage lambda (λ lysozyme) in complex with the inhibitor hexa-N-acetylchitohexaose (NAG6) (PDB: 3D3D) has been reported previously showing sugar units from two molecules of NAG6 bound in the active site. One NAG6 is bound with four sugar units in the ABCD sites and the other with two sugar units in the E′F′ sites potentially representing the cleavage reaction products; each NAG6 cross links two neighboring λ lysozyme molecules. Here we use NMR and MD simulations to study the interaction of λ lysozyme with the inhibitors NAG4 and NAG6 in solution. This allows us to study the interactions within the complex prior to cleavage of the polysaccharide. 1HN and 15N chemical shifts of λ lysozyme resonances were followed during NAG4/NAG6 titrations. The chemical shift changes were similar in the two titrations, consistent with sugars binding to the cleft between the upper and lower domains; the NMR data show no evidence for simultaneous binding of a NAG6 to two λ lysozyme molecules. Six 150 ns MD simulations of λ lysozyme in complex with NAG4 or NAG6 were performed starting from different conformations. The simulations with both NAG4 and NAG6 show stable binding of sugars across the D/E active site providing low energy models for the enzyme-inhibitor complexes. The MD simulations identify different binding subsites for the 5th and 6th sugars consistent with the NMR data. The structural information gained from the NMR experiments and MD simulations have been used to model the enzyme-peptidoglycan complex.  相似文献   

11.
Carnosic acid, an antioxidant extracted from rosemary, is shown to produce radicals when in contact with oxidized methyl oleate in the absence of air above 50°C. Two radical species are formed: the first one, stable up to -110°C, is an hydroxy-phenoxy radical whose ESR spectrum was analyzed by studying its temperature dependence and its sensitivity to deuterium/proton exchange. The second species was observed above 110°C, its ESR spectrum was identical to the spectrum obtained when carnosol, another antioxidant extracted from rosemary, was heated at the same temperature in the presence of oxidized lipid. This observation is probably due to the transformation of carnosic acid into carnosol; the analysis of the corresponding ESR spectrum suggests the formation of a keto phenoxy radical exhibiting a great delocalization of the unpaired electron.  相似文献   

12.
Abstract

Modern techniques in nuclear magnetic resonance (NMR) allow investigators to probe molecular interactions with greater sensitivity and speed than ever before. Exploiting the nuclear Overhauser effect (NOE), the intermolecular interactions between dimethylsulfoxide (DMSO) and lipid vesicles were investigated. The DMSO methyl proton signal varies with experimental mixing time suggesting the system behaves in a manner similar to that of a ligand weakly binding to a macromolecule.  相似文献   

13.
Multinuclear NMR spectroscopy is used to investigate the effect of glutamine on neuronal glucose metabolism. Primary neurons were incubated with [1-13C]glucose in the absence or presence of glutamine (2 mM) and/or NH4Cl (5 mM). After ammonia-treatment, the concentrations of high-energy phosphates decreased up to 84% of control, which was aggravated in glutamine-containing medium (up to 42% of control). These effects could not be attributed to changes in mitochondrial glucose oxidation. Withdrawal of glutamine decreased amino acid concentrations, e.g. of glutamate to 53%, but also considerably lessened the 13C enrichment in [4-13C]glutamate to 8.3% of control, and decreased the 13C-enrichment in acetyl-CoA entering the Krebs cycle (P<0.001). Thus, although glutamine is potent in replenishing neuronal glutamate stores, glutamate formation is mainly attributed to its de novo synthesis from glucose. Furthermore, mitochondrial glucose metabolism strongly depends on the supply of carbons from glutamine, indicating that exogenous glutamine is a well-suited substrate to replenish neuronal Krebs cycle intermediates.  相似文献   

14.
Changes in brain lipid composition have been determined in 24 months-old Fischer rats with respect to 6 months-old ones. The cerebral levels of sphingomyelin and cholesterol were found to be significantly increased in aged rats, whereas the amount of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and phosphatidic acid appear to be unaffected by aging. Long-term feeding with acetyl-L-carnitine was able to reduce the age-dependent increase of both sphingomyelin and cholesterol cerebral levels with no effect on the other measured phospholipids. These findings shown that changes in membrane lipid metabolism and/or composition represent one of the alterations occurring in rat brain with aging, and that long-term feeding with acetyl-L-carnitine can be useful in normalizing these age-dependent disturbances.  相似文献   

15.
The solution structures of the lanthanide complexes, [Ln(L)(NO3)3] and [Ln(L)2(NO3)3], where L = bis(diphenylphosphorylmethyl)mesitylene and Ln = La, Ce, Nd, Er, were investigated by 31P NMR and IR spectroscopy, conductivity and sedimentation analysis. Variable-temperature 31P{1H} NMR spectroscopy was used to identify species present in solution and to monitor their interconversions. The results indicate that equilibrium between molecular complexes [Ln(L)n(NO3)3]0 and cationic species (as ion pairs [Ln(L)n(NO3)2]+ · (NO3) and as free ions [Ln(L)n(NO3)2]+, throughout n = 1, 2) in solutions can be observed by 31P{1H} NMR spectroscopy due to separate detection of the molecular complexes and cationic species. The chelate coordination of the ligand and nitrate ions is retained in all complex species at ambient temperature except for [Er(L)2(NO3)3]. The crystal structure of [Nd(L)(NO3)3(MeCN)]MeCN was determined by X-ray diffraction.  相似文献   

16.
A detailed analysis of the 13C relaxation of 13C-labelled spermine bound to duplex and quadruplex DNA is presented. T1, T2 and heteronuclear NOE data were collected at four 13C frequencies (75.4, 125.7, 150.9 and 201.2 MHz). The data were analyzed in terms of a frequency-dependent order parameter, S 2(ω), to estimate the generalized order parameter and the contributions to the relaxation from different motional frequencies in the picosecond–nanosecond timescale and from any exchange processes that may be occurring on the microsecond–millisecond timescale. The relaxation data was surprisingly similar for spermine bound to two different duplexes and a linear parallel quadruplex. Analysis of the relaxation data from these complexes confirmed the conclusions of previous studies that the dominant motion of spermine is independent of the macroscopic tumbling of the DNA and has an effective correlation time of ∼50 ps. In contrast, spermine bound to a folded antiparallel quadruplex had faster relaxation rates, especially R 2. As with the other complexes, a fast internal motion of the order of 50 ps makes a substantial contribution to the relaxation. The generalized order parameter for spermine bound to duplex DNA and the linear quadruplex is small but is larger for spermine bound to the folded quadruplex. In the latter case, there is evidence for exchange between at least two populations of spermine occurring on the microsecond–millisecond timescale. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
The interaction of guanine, guanosine or 5-GMP (guanosine 5-monophosphate) with [Pd(en)(H2O)2](NO3)2 and [Pd(dapol)(H2O)2](NO3)2, where en is ethylenediamine and dapol is 2-hydroxy-1,3-propanediamine, were studied by UV-Vis, pH titration and 1H NMR. The pH titration data show that both N1 and N7 can coordinate to [Pd(en)(H2O)2]2+ or [Pd(dapol)(H2O)2]2+. The pKa of N1-H decreased to 3.7 upon coordination in guanosine and 5-GMP complexes, which is significantly lower than that of ∼9.3 in the free ligand. In strongly acidic solution where N1-H is still protonated, only N7 coordinates to the metal ion, but as the pH increases to pH ∼3, 1H NMR shows that both N7-only and N1-only coordinated species exist. At pH 4-5, both N1-only and N1,N7-bridged coordination to Pd(II) complexes are found for guanosine and 5-GMP. The latter form cyclic tetrameric complexes, [Pd(diamine)(μ-N1,N7-Guo]44+ and [Pd(diamine)(μ-N1,N7-5-GMP)]4Hx(4−x)−, (x=2,1, or 0) with either [Pd(en)(H2O)2](NO3)2 or [Pd(dapol)(H2O)2](NO3)2. The pH titration data and 1H NMR data agree well with the exception that the species distribution diagrams show the initial formation of the N1-only and N1,N7-bridged complexes to occur at somewhat higher pH than do the NMR data. This is due to a concentration difference in the two sets of data.  相似文献   

18.
The interaction of trimannoside, α?benzyl 3, 6‐di‐O‐(α‐D ‐mannopyranosyl)‐α‐D ‐mannopyranoside, 1 with ASAI (Allium sativam agglutinin I, garlic lectin) was studied to reveal the conformational preferences of this ligand in bound‐state and detailed binding mode at atomic level. The binding phenomenon was then compared with another well‐known mannose‐binding lectin, ConA (Concanavalin A). Structural studies of the ligand in free state were done using NMR spectroscopy and Molecular Dynamics simulations. It is found that the substituted‐trimannoside can undergo conformational transitions in solution, with one major and one minor conformation per glycosidic linkage (α 1→3 and α 1→6). On the other hand in the bound‐state only one of the two major conformations was significantly populated. The role of phenyl ring in the binding process was explored. An extended binding site was observed for the trimannoside in ASAI utilizing the aromatic substituent, which is not seen in ConA. Binding data from difference absorption spectroscopy supported this fact that the binding of benzyl‐substituted ligand is tighter with ASAI than ConA. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 952–967, 2010.  相似文献   

19.
(1) The energy state and free intracellular calcium concentration ([Cai) of super-fused cortical slices were measured in moderate hypoxia (~65 μM O2), in mild hypoglycaemia (0.5 mM glucose), and in combinations of the two insults using 19F and 31P NMR spectroscopy. (2) Neither hypoxia nor hypoglycaemia alone caused any significant change in [Cai. Hypoxia caused a 40% fall in phosphocreatine (PCr) content but not in ATP level, and hypoglycaemia produced a slight fall in both (as expected from previous studies). These changes in the energy state recovered on return to control conditions. (3) A combined sequential insult (hypoxia, followed by hypoxia plus hypoglycaemia) produced a 100% increase in [Ca, and a decrease in PCr level to ~25% of control. The reverse combined sequential insult (hypoglycaemia, followed by hypoglycaemia plus hypoxia) had the same effect. On return to control conditions there was some decrease in [Cai and a small increase in PCr content, but neither recovered to control levels. (4) Exposure of the tissue to the combined simultaneous insult (hypoxia plus hypoglycaemia) immediately after the control spectra had been recorded resulted in a fivefold increase in [Cai and a similar decrease in PCr level to 20–25% of control. There was little if any change of [Cai or PCr level on return to control conditions. (5) These results are discussed in terms of metabolic adaptation of some but not all of the cortical cells to the single type of insult, which renders the tissues less vulnerable to the combined insult.  相似文献   

20.
Simultaneous recording of different NMR parameters is an efficient way to reduce the overall experimental time and speed up structural studies of biological macromolecules. This can especially be beneficial in the case of fast NMR-based drug screening applications or for collecting NOE restraints, where prohibitively long data collection time may be required. We have developed a novel pulse sequence element that enables simultaneous detection of amide 15N, 1H and methyl 13C, 1H correlations. The coherence selection for the 15N spins can be obtained using the gradient selected and coherence order selective coherence transfer, whereas the hypercomplex (States) method is simultaneously employed for the 13C coherence selection. Experimental verification of proposed time-shared approach for simultaneous detection amide 15N, 1H and methyl 13C, 1H correlations has been carried out with three proteins, human ubiquitin, SH3 domain of human epidermal growth factor receptor pathway substrate 8-like protein (Eps8L1) and maltose binding protein complex with β-Cyclodextrin. In addition, the proposed methodology was applied for ligand binding site mapping on SH3 domain of Eps8L1, using uniformly 15N and fractionally (10%) 13C labeled sample. Our results show that the proposed time-shared 15N/13C-HSQC affords significant time saving (or improved sensitivity) in establishing 15N, 1H and methyl 13C, 1H correlations, thus making it an attractive building block for 3D and 4D dimensional applications. It is also a very efficient tool in protein ligand interaction studies even when combined with cost-effective labeling scheme with uniform 15N and 10% fractional 13C enrichment. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Peter Würtz and Olli Aitio contributed equally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号