首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanomedicine as a field has emerged from the early success of nanoparticle-based drug delivery systems, in particular for treatment of cancer, and the advances made in nano- and biotechnology over the past decade. A prerequisite for nanoparticle-based drug delivery systems to be effective is that the drug payload is released at the target site. A large number of drug release strategies have been proposed that can be classified into certain areas. The simplest and most successful strategy so far, probably due to relative simplicity, is based on utilizing certain physico-chemical characteristics of drugs to obtain a slow drug leakage from the formulations after accumulation in the cancerous site. However, this strategy is only applicable to a relatively small range of drugs and cannot be applied to biologicals. Many advanced drug release strategies have therefore been investigated. Such strategies include utilization of heat, light and ultrasound sensitive systems and in particular pH sensitive systems where the lower pH in endosomes induces drug release. Highly interesting are enzyme sensitive systems where over-expressed disease-associated enzymes are utilized to trigger drug release. The enzyme-based strategies are particularly interesting as they require no prior knowledge of the tumour localization. The basis of this review is an evaluation of the current status of drug delivery strategies focused on triggered drug release by disease-associated enzymes. We limit ourselves to reviewing the liposome field, but the concepts and conclusions are equally important for polymer-based systems.  相似文献   

2.
Tumor specific drug delivery has become increasingly interesting in cancer therapy, as the use of chemotherapeutics is often limited due to severe side effects. Conventional drug delivery systems have shown low efficiency and a continuous search for more advanced drug delivery principles is therefore of great importance. In the first part of this review, we present current strategies in the drug delivery field, focusing on site-specific triggered drug release from liposomes in cancerous tissue. Currently marketed drug delivery systems lack the ability to actively release the carried drug and rely on passive diffusion or slow non-specific degradation of the liposomal carrier. To obtain elevated tumor-to-normal tissue drug ratios, it is important to develop drug delivery strategies where the liposomal carriers are actively degraded specifically in the tumor tissue. Many promising strategies have emerged ranging from externally triggered light- and thermosensitive liposomes to receptor targeted, pH- and enzymatically triggered liposomes relying on an endogenous trigger mechanism in the cancerous tissue. However, even though several of these strategies were introduced three decades ago, none of them have yet led to marketed drugs and are still far from achieving this goal. The most advanced and prospective technologies are probably the prodrug strategies where non-toxic drugs are carried and activated specifically in the malignant tissue by overexpressed enzymes. In the second part of this paper, we review our own work, exploiting secretory phospholipase A2 as a site-specific trigger and prodrug activator in cancer therapy. We present novel prodrug lipids together with biophysical investigations of liposome systems, constituted by these new lipids and demonstrate their degradability by secretory phospholipase A2. We furthermore give examples of the biological performance of the enzymatically degradable liposomes as advanced drug delivery systems.  相似文献   

3.
In recent years, drug manufacturers and researchers have begun to consider the nanobiotechnology approach to improve the drug delivery system for tumour and cancer diseases. In this article, we review current strategies to improve tumour and cancer drug delivery, which mainly focuses on sustaining biocompatibility, biodistribution, and active targeting. The conventional therapy using cornerstone drugs such as fludarabine, cisplatin etoposide, and paclitaxel has its own challenges especially not being able to discriminate between tumour versus normal cells which eventually led to toxicity and side effects in the patients. In contrast to the conventional approach, nanoparticle-based drug delivery provides target-specific delivery and controlled release of the drug, which provides a better therapeutic window for treatment options by focusing on the eradication of diseased cells via active targeting and sparing normal cells via passive targeting. Additionally, treatment of tumours associated with the brain is hampered by the impermeability of the blood–brain barriers to the drugs, which eventually led to poor survival in the patients. Nanoparticle-based therapy offers superior delivery of drugs to the target by breaching the blood–brain barriers. Herein, we provide an overview of the properties of nanoparticles that are crucial for nanotechnology applications. We address the potential future applications of nanobiotechnology targeting specific or desired areas. In particular, the use of nanomaterials, biostructures, and drug delivery methods for the targeted treatment of tumours and cancer are explored.  相似文献   

4.
For years, the field of drug delivery has focused on (1) controlling the release of a therapeutic and (2) targeting the therapeutic to a specific cell type. These research endeavors have concentrated mainly on the development of new degradable polymers and molecule-labeled drug delivery vehicles. Recent interest in biomaterials that respond to their environment have opened new methods to trigger the release of drugs and localize the therapeutic within a particular site. These novel biomaterials, usually termed "smart" or "intelligent", are able to deliver a therapeutic agent based on either environmental cues or a remote stimulus. Stimuli-responsive materials could potentially elicit a therapeutically effective dose without adverse side effects. Polymers responding to different stimuli, such as pH, light, temperature, ultrasound, magnetism, or biomolecules have been investigated as potential drug delivery vehicles. This review describes the most recent advances in "smart" drug delivery systems that respond to one or multiple stimuli.  相似文献   

5.
Colon targeting drug delivery systems have attracted many researchers due to the distinct advantages they present such as near neutral pH, longer transit time and reduced enzymatic activity. Moreover, in recent studies, colon specific drug delivery systems are gaining importance for use in the treatment of local pathologies of the colon and also for the systemic delivery of protein and peptide drugs.In previous works, our group has developed different types of hydrophilic matrices with grafted copolymers of starch and acrylic monomers with a wide range of physicochemical properties which have demonstrated their ability in controlled drug release. Since the cost of synthesizing a new polymeric substance and testing for its safety is enormous, polymer physical blends are frequently used as excipients in controlled drug delivery systems due to their versatility. So, the aim of this work is to combine two polymers which offer different properties such as permeability for water and drugs, pH sensitivity and biodegradability in order to further enhance the release performance of various drugs. It was observed that these physical blend matrices offer good controlled release of drugs, as well as of proteins and present suitable properties for use as hydrophilic matrices for colon-specific drug delivery.  相似文献   

6.
Microparticulate drug delivery systems have shown a great interest in the pharmaceutical area. They allow the increase of drug therapeutic efficacy and the reduction of side effects. In this context, microsponges represent a new model of porous polymer microspheres, which allow the entrapment of a wide range of active agents. During the development, it is necessary the characterization of the system and among of the most important tests are the release and permeation profile analysis. They can demonstrate the behavior of drug in a specific site with a particular application condition and are related to therapeutic efficacy. Therefore, this review provides an overview of drug delivery profile from microsponges. Methods for determination of in vitro release and ex vivo permeation studies are detailed. Examples of drug delivery from microsponges administered in different sites are also discussed with aim to provide an understanding of the use of this strategy to modify the drug delivery.  相似文献   

7.
Nanosized calcium phosphates studied as drug delivery systems are highly compatible with the various drugs like insulin, antibiotics etc. Zinc is an essential trace element that plays a crucial role in the synthesis, storage and release of insulin in a human body. Therefore, an attempt has been made to develop zinc modified calcium phosphate nanoparticles (less than 100 nm) as carriers for intestinal delivery of insulin. The insulin loaded nanoparticles were coated with pH sensitive alginate. These pH sensitive nanoparticles released insulin in the intestinal medium, and the conformation of released insulin was stable. The blood glucose level of diabetic rats came to normal on administration of the formulation. With the beneficial effect of zinc reported on diabetic patients, the present system seems to be an excellent carrier for intestinal delivery of insulin.  相似文献   

8.
Cyclodextrins (CDs) are used in oral pharmaceutical formulations, by means of inclusion complexes formation, with the following advantages for the drugs: (1) solubility, dissolution rate, stability, and bioavailability enhancement; (2) to modify the drug release site and/or time profile; and (3) to reduce or prevent gastrointestinal side effects and unpleasant smell or taste, to prevent drug–drug or drug–additive interactions, or even to convert oil and liquid drugs into microcrystalline or amorphous powders. A more recent trend focuses on the use of CDs as nanocarriers, a strategy that aims to design versatile delivery systems that can encapsulate drugs with better physicochemical properties for oral delivery. Thus, the aim of this work was to review the applications of the CDs and their hydrophilic derivatives on the solubility enhancement of poorly water-soluble drugs in order to increase their dissolution rate and get immediate release, as well as their ability to control (to prolong or to delay) the release of drugs from solid dosage forms, either as complexes with the hydrophilic (e.g., as osmotic pumps) and/or hydrophobic CDs. New controlled delivery systems based on nanotechnology carriers (nanoparticles and conjugates) have also been reviewed.  相似文献   

9.
Summary Efficient delivery of peptide drugs to the desired site is very important. There are a number of barriers that may limit using peptides as potential drugs, some of these obstacles include poor biomembrane permeability, enzymatic degradation and low pH. To improve peptide drug efficiency a selective drug delivery system is required. Here we review some of the delivery systems available for peptides and we will also briefly discuss peptides that have been used as delivery systems.  相似文献   

10.
环境敏感型聚合物纳米抗肿瘤药物传递系统能够响应外界环境的微小刺激,引起自身结构的变化,释放出药物,在肿瘤治疗方面具长效低毒、可控及高载药量等优势,已被广泛应用于生物医学领域.本文介绍了聚合物环境响应型纳米药物传输系统的发展近况,并从pH 值敏感型、温度敏感型、氧化还原敏感型、酶敏感型以及其他敏感型给药系统角度,阐述了环境敏感型药物传输系统在抗肿瘤领域的研究现状及未来展望.  相似文献   

11.
Colon-specific drug delivery systems (CDDS) are desirable for the treatment of a range of local diseases such as ulcerative colitis, Crohn’s disease, irritable bowel syndrome, chronic pancreatitis, and colonic cancer. In addition, the colon can be a potential site for the systemic absorption of several drugs to treat non-colonic conditions. Drugs such as proteins and peptides that are known to degrade in the extreme gastric pH, if delivered to the colon intact, can be systemically absorbed by colonic mucosa. In order to achieve effective therapeutic outcomes, it is imperative that the designed delivery system specifically targets the drugs into the colon. Several formulation approaches have been explored in the development colon-targeted drug delivery systems. These approaches involve the use of formulation components that interact with one or more aspects of gastrointestinal (GI) physiology, such as the difference in the pH along the GI tract, the presence of colonic microflora, and enzymes, to achieve colon targeting. This article highlights the factors influencing colon-specific drug delivery and colonic bioavailability, and the limitations associated with CDDS. Further, the review provides a systematic discussion of various conventional, as well as relatively newer formulation approaches/technologies currently being utilized for the development of CDDS.KEY WORDS: colon targeting, factors affecting colon delivery, future trends, novel approaches, traditional approaches  相似文献   

12.
Cai XJ  Xu YY 《Cytotechnology》2011,63(4):319-323
In past years with the advances of chemistry and material sciences, the development of nanotechnology brought generations of nanomaterials with specific biomedical properties. These include the nanoparticle-based drug delivery, nanosized drugs, and nanomaterials for tissue engineering. The present article focuses on the use of nanomaterials in controlled drug release. The applications of nanomaterials with nano-enabled drug release characteristics brought many benefits when compared to the traditional (bulk) materials. We discuss the current advances and propose some future directions for the technology development.  相似文献   

13.
Abstract

Ideally, release profiles of drugs from drug delivery systems should be designed to meet specific demands, such as release at a specific time points and predetermined doses; however most systems lack these capabilities. Liposomes are an example of a delivery system that generally release its contents in a continuous fashion. We have pursed two approaches of pulsatile release- that is, release of bursts of incorporated drug at specific time points- with microencapsulated liposomes. In the first approach our studies revealed that the encapsulation of certain liposomes within alginate-poly (L-lysine) microcapsules produce systems that release their contents in a pulsatile manner. In the second approach, enzymatically controlled pulsatile release from microencapsulated liposomes was achieved by incorporating phospholipase A2 into the systems. In both systems, the number of pulses and duration between the pulses could be regulated by selecting lipid composition, enzyme concentration and type, and other parameters, such as polyelectrolyte (alginate, poly(L-lysine)) and calcium ion concentrations.  相似文献   

14.
Mitochondria are considered one of the most important subcellular organelles for targeting and delivering drugs because mitochondria are the main location for various cellular functions and energy (i.e., ATP) production, and mitochondrial dysfunctions and malfunctions cause diverse diseases such as neurodegenerative disorders, cardiovascular disorders, metabolic disorders, and cancers. In particular, unique mitochondrial characteristics (e.g., negatively polarized membrane potential, alkaline pH, high reactive oxygen species level, high glutathione level, high temperature, and paradoxical mitochondrial dynamics) in pathological cancers have been used as targets, signals, triggers, or driving forces for specific sensing/diagnosing/imaging of characteristic changes in mitochondria, targeted drug delivery on mitochondria, targeted drug delivery/accumulation into mitochondria, or stimuli-triggered drug release in mitochondria. In this review, we describe the distinctive structures, functions, and physiological properties of cancer mitochondria and discuss recent technologies of mitochondria-specific “key characteristic” sensing systems, mitochondria-targeted “drug delivery” systems, and mitochondrial stimuli-specific “drug release” systems as well as their strengths and weaknesses.  相似文献   

15.
Despite advances in diagnostic imaging and drug discovery, primary malignant brain tumors remain fatal. Median survival for patients with the most severe forms is rarely past eight months. The severity of the disease and the lack of substantial improvement in patient survival demand that new approaches be explored in drug delivery to brain tumors. Recently, local delivery of chemotherapy to brain tumors has provided a way to circumvent the blood-brain barrier, allowing delivery of chemotherapy drugs directly to malignant cells in the brain. Two methods of local delivery have been developed: polymeric-controlled release and convection-enhanced delivery. Controlled release utilizes degradable or non-degradable polymers as carriers of chemotherapy; polymer implants or microparticles are implanted locally to introduce a sustained source of drug for periods of days or months. Convection-enhanced delivery employs the bulk flow of drugs dissolved in fluid, which is introduced intracranially using a catheter and pump. The convective fluid flow is capable of delivering drugs great distances within the brain, potentially treating invasive cells at a distance from the catheter infusion site. These two new delivery strategies are capable of delivering both standard chemotherapeutic drugs and new methods of anti-cancer therapy. Taken individually, or used in tandem, they represent a potential revolution in brain cancer treatment.  相似文献   

16.
In order to reduce the toxicity and increase the efficacy of drugs, there is a need for smart drug delivery systems. Liposomes are one of the promising tools for this purpose. An ideal liposomal delivery system should be stable, long-circulating, accumulate at the target site and release its drug in a controlled manner. Even though there have been many developments to this end, the dilemma of having a stable liposome during circulation but converting it into a leaky structure at the target site is still a major challenge. So far, most attempts have focused on destabilizing the liposome in response to a specific stimulus at a target site, but with limited success. Our approach is to keep the stable liposome but build in a remote-controlled valve as a new release mechanism, instead. The valve is a pore-forming bacterial membrane protein. It has been engineered such that, after being reconstituted into the liposomes, its opening and closing can be controlled on command by the ambient pH, light or a combination of both. In addition, a much higher degree of flexibility for fine-tuning of the liposome's response to its environment is achieved.  相似文献   

17.
Many strategies for treating diseases require the delivery of drugs into the cell cytoplasm following internalization within endosomal vesicles. Thus, compounds triggered by low pH to disrupt membranes and release endosomal contents into the cytosol are of particular interest. Here, we report novel cationic lysine-based surfactants (hydrochloride salts of N(ε)- and N(α)-acyl lysine methyl ester) that differ in the position of the positive charge and the length of the alkyl chain. Amino acid-based surfactants could be promising novel biomaterials in drug delivery systems, given their biocompatible properties and low cytotoxic potential. We examined their ability to disrupt the cell membrane in a range of pH values, concentrations and incubation times, using a standard hemolysis assay as a model of endosomal membranes. Furthermore, we addressed the mechanism of surfactant-mediated membrane destabilization, including the effects of each surfactant on erythrocyte morphology as a function of pH. We found that only surfactants with the positive charge on the α-amino group of lysine showed pH-sensitive hemolytic activity and improved kinetics within the endosomal pH range, indicating that the positive charge position is critical for pH-responsive behavior. Moreover, our results showed that an increase in the alkyl chain length from 14 to 16 carbon atoms was associated with a lower ability to disrupt cell membranes. Knowledge on modulating surfactant-lipid bilayer interactions may help us to develop more efficient biocompatible amino acid-based drug delivery devices.  相似文献   

18.
P D Senter 《FASEB journal》1990,4(2):188-193
A new strategy for the delivery of cytotoxic agents to solid tumors is described in which monoclonal antibodies are used as carriers for enzymes to tumor cell surfaces. The enzymes are chosen for their abilities to convert relatively noncytotoxic drug precursors (pro-drugs) into active anticancer drugs. The drugs thus formed can then penetrate into nearby tumor cells, resulting in cell death. A number of prodrugs have been developed that can be transformed into active anti-cancer drugs by enzymes of both mammalian and non-mammalian origin. The enzymes have been shown to localize into tumors when linked to monoclonal antibodies that bind to tumor-associated antigens. In vivo studies indicate that MAb-enzyme/prodrug combinations can result in antitumor activities significantly greater than those of the prodrugs or drugs given alone. This is most likely due to the generation of large amounts of active drug at the tumor site.  相似文献   

19.
摘要 目的:构建一种肿瘤诊断和治疗一体化药物,并利用肝癌动物模型开展诊疗效能评价。方法:利用多孔金属有机骨架材料ZIF-8,通过配位作用同时对化疗药物阿霉素(DOX)和近红外荧光染料IR-820进行负载。而后,利用超声的方法在ZIF-8-IR-820-DOX表面修饰了红细胞膜以提高载药体系的生物安全性和稳定性,得到具有生物伪装特性的pH响应型ZIF-8-IR-820-DOX@RM纳米颗粒。最后,通过对该药物体系的粒径、表面电位、形貌等理化性质进行表征,并利用肝癌动物模型验证该药物的诊断和治疗效能。结果:成功构建了一款红细胞伪装的金属框架纳米诊疗一体试剂,该试剂具有较好的pH相应性,在肿瘤pH 5.5 条件下,药物的释放率达到98.4 %,而在机体正常pH 7.4条件下,释放率仅为15.3 %。在小鼠肝癌动物模型的诊疗过程中,能通过近红外荧光较好的识别肿瘤的位置和大小,且对小鼠肿瘤具有较好的治疗效果。结论:本研究所构建的ZIF-8-IR-820-DOX @RM能通过肿瘤处增强的渗透性和保留(EPR)效应,精准的到达肿瘤部位,并利用pH响应性,在肿瘤酸性环境中精准释放携带的抗肿瘤药物和近红外荧光成像试剂,实现对肿瘤的诊断和治疗一体化设计。为肿瘤治疗的相关研究提供了一种思路和借鉴。  相似文献   

20.
In order to reduce the toxicity and increase the efficacy of drugs, there is a need for smart drug delivery systems. Liposomes are one of the promising tools for this purpose. An ideal liposomal delivery system should be stable, long-circulating, accumulate at the target site and release its drug in a controlled manner. Even though there have been many developments to this end, the dilemma of having a stable liposome during circulation but converting it into a leaky structure at the target site is still a major challenge. So far, most attempts have focused on destabilizing the liposome in response to a specific stimulus at a target site, but with limited success. Our approach is to keep the stable liposome but build in a remote-controlled valve as a new release mechanism, instead. The valve is a pore-forming bacterial membrane protein. It has been engineered such that, after being reconstituted into the liposomes, its opening and closing can be controlled on command by the ambient pH, light or a combination of both. In addition, a much higher degree of flexibility for fine-tuning of the liposome's response to its environment is achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号