首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Some properties of an extracellular lipase produced byLactobacillus delbrueckii subsp.bulgaricus were studied. Maximum enzyme activity was found against olive and butter oil as enzyme substrates. Addition of 9% acacia gum, 0.1% Na-deoxycholate and 0.01 M CaCl2 to the enzyme reaction mixture increased-lipase activity from 5.3 to 14.5 (FFA/mg protein/minute) at pH 6.0 and at 40° C. Maximum lipase production was reached in the presence of glucose as a sole source of carbon, wheat bran as nitrogen source, olive oil as a sole lipid source and butyric acid as fatty acid supporting the growth medium. An initial pH value of the culture medium of 6.0 and a temperature of 35° C gave the highest lipolytic activity.  相似文献   

2.
For the production of extracellular lipase by Alcaligenes species No. 679, NaNO3, polyoxyethylene alkyl ether, Fe++, sodium citrate and fructose were found to be effective. The enzyme was prepared by acetone precipitation from the filtrate of the culture broth of this strain. The enzyme was most active at pH 9.0 and 50°C, while 35% of its activity was lost on heat treatment at 60°C for 10 min. Sodium salts of bile acids stimulated the enzyme activity. This lipase could hydrolyse natural fats and oils as well as olive oil. During the hydrolysis of olive oil, monoglyceride was found to accumulate up to 70 mol percent. This lipase possesses special properties similar to those of pancreatic lipase as shown in the comparative experiments.  相似文献   

3.
The properties of the alkaline lipase activity (EC 3.1.1.3) that was recovered almost completely from a microsomal membrane fraction of 4-d-old rapeseed (Brassica napus L.) cotyledons were studied employing a titrimetric test procedure. The apparent KM was 6.5 mmol l-1, with emulgated sunflower oil as the substrate. The products of triglyceride hydrolysis in vitro were glycerol, free fatty acids, and minor amounts of mono- and diglycerides. Maximum lipase activity depended on the preincubation of the lipolytic membrane fraction in 0.15 mol l-1 NaCl and on the presence of at least 0.1 mol l-1 NaCl in the test mixture. Desoxycholate and up to 0.1 mol l-1 CaCl2 also activated the enzyme while EDTA and detergents such as trito x-100, digitonin, tween 85, and sodium dodecylsulfate were inhibitory. The rapeseed lipase displayed a conspicuous substrate selectivity among different plant triglycerides; the activity was inversely correlated with the oleic acid content of the oils. Water-soluble triacetin and the phospholipid lecithin were not hydrolyzed. Increasing amounts of free fatty acids reduced lipase activity; erucic acid, a major component of rapeseed oil, exhibited the strongest effect, suggesting a possible role in the regulation of lipase activity in vivo. The data demonstrate that the lipolytic membrane fraction houses a triglyceride lipase with properties similar to other plant and animal lipases. It can both qualitatively and quantitatively account for the fat degradation in rapeseed cotyledons. The evidence that provides further reason to acknowledge the membranous appendices of the spherosomes as the intracellular site of lipolysis is discussed.  相似文献   

4.
Two types of lipases (extracellular and cell-bound) were produced by Geotrichum candidum 4013 in liquid medium and were used as biocatalysts in blackcurrant oil hydrolysis. Reaction products were analysed for the degree of conversion from which enzyme activity was evaluated, and the composition of free fatty acids was compared to the composition of oil substrate. The enzyme activity was measured also before and after the reaction in SC-CO2. The fatty acid composition of the acids liberated from oil by hydrolysis suggests a specificity of the cell-bound and extracellular enzymes from Geotrichum candidum 4013. The extracellular lipase displays low selectivity to the polyunsaturated fatty acids, and the cell-bound lipase possesses selectivity to the saturated fatty acids. Enantioselectivity of the tested processes achieved with both induced enzymes was high (from 43 to 242). The activity of all enzymes has markedly increased after their exposure to SC-CO2. The treatment of enzymes by SC-CO2 could be easy-to-use approaches to improve the efficiency of enzymatic reactions.  相似文献   

5.
Summary Major analytical problems were encountered while carrying out the lipase catalyzed glycerolysis of olive oil in n-hexane. Since direct quantification of monoglycerides could not be achieved, an alternative methodology is proposed: the estimation of monoglyceride production from a mass balance after having assayed for the unconverted triolein, as well as for the diolein and free fatty acids formed.  相似文献   

6.
Summary The applications of immobilized lipase ofMucor miehei for the synthesis of acetone glycerol acyl ester from acetone glycerol and fatty acid, which is the first step for monoglyceride production was investigated. With a high oleic acid to acetone glycerol ratio (O/A, mol/mol), a high catalytic activity was observed under low water content in the reaction mixture. By the combination of high O/A ratio (>3) and removal of water which was produced during the reaction, the conversion degree was increased to almost 100%. With the O/A ratio of 3, the approximate half-life of the immobilized lipase and productivity of ester was estimated to be 20 days and 869 g product/g immobilized enzyme per 2 half-lives, respectively.  相似文献   

7.
Gene cloning, optimized production and property of marine lipase from Bacillus pumilus B106 associated with South China Sea sponge Halichondria rugosa were investigated in this paper. A lipase gene with whole ORF encoding 215 amino acids was obtained by PCR, protein domain prediction suggested that the deduced lipase belongs to α/β hydrolases family. Based on single factor Seriatim-Factorial test and Plackett–Burman experimental design, the optimal medium consisted of (per l) 12.5 ml maize oil, 5.0 g beef extract, 2.0 g PO4 3− (0.6 g KH2PO4, 1.4 g K2HPO4), 17.15 g Mg2+, 5.0 g yeast extract, 2.282 g CaCl2 and 5.0 ml Tween80 with artificial sea water. Using this optimum medium, lipase activity and cell concentration were increased by 3.54- and 1.31-fold over that of the basal medium, respectively. This lipase showed tolerance to high salinity, pH and temperature. About 10–20% methanol exhibited a stimulatory effect on the lipase activity, while activity was inhibited by 30–40% methanol, 2-propanol, DMSO, and ethanol. This study provides a valuable resource for marine lipase production and extends our understanding of the possible role of sponge-associated bacteria in the biotransformation of chemical compounds for the sponge host.  相似文献   

8.
Penicillium candidum grew and produced lipase in a culture medium supplemented with 0.2% olive oil. Significant enzyme production required the presence of olive, oil and was prevented by cycloheximide. Polyacrylamide gel electrophoresis of filtrates from olive oil fermentations gave a single band of lipase activity (MW 80 KDa). Among the olive oil components only oleate allowed significant lipase production. Other carboxylic and saturated fatty acids containing similar or lower numbers of carbon atoms, did not cause derepression of lipase formation.  相似文献   

9.
Lipase in the Lipid Bodies of Corn Scutella during Seedling Growth   总被引:6,自引:3,他引:3       下载免费PDF全文
In the scutella of corn (Zea mays), lipase activity is absent in ungerminated seeds and increases during seedling growth. At the peak stage of lipolysis, about 50% of the lipase activity is recovered in the lipid body fraction after flotation centrifugation. The lipase is tightly bound to the lipid bodies, and resists solubilization by repeated washing with buffers or NaCl solutions. Isolated lipid bodies undergo autolysis of internal triacylglycerols, resulting in the release of fatty acids. After the triacylglycerols in isolated lipid bodies have been extracted with diethyl ether, the lipase is recovered in the membrane fraction. The lipase has an optimal activity at pH 7.5 in the autolysis of lipid bodies, or on trilinolein or N-methylindoxylmyristate. Of the various acylglycerols examined, the enzyme is active only on acylglycerols of linoleic and oleic acids which are the major fatty acid constituents of corn oil. The activity is not greatly affected by NaCl, CaCl2, or pretreatment of the enzyme with p-chloromercuribenzoate or mersalyl, and detergents abolish the activity. The enzyme hydrolyzes trilinolein completely to fatty acids; during the course of reaction, there is little accumulation of di- or mono-linolein.  相似文献   

10.
Summary An enzymatic method for synthesis of monoglyceride from 1,2-isopropylidene glycerol and n-3 polyunsaturated fatty acid concentrate was investigated in organic solvent. Optimal reaction conditions for monoglyceride synthesis by lipase were established. Lipase IM-60 fromMucor miehei produced yields of monoglyceride of up to 80% in this system. The resultant monoglyceride contained 76.2% n-3 polyunsaturated fatty acid (eicosapentaenoic acid 43.3%; docosahexaenoic acid, 32.7%). Isooctane and hexane were suitable organic solvents for monoglyceride synthesis and optimal initial water content was 2.5%. Lipase IM-60 was relatively stable in organic solvent and is easily recovered for reuse.  相似文献   

11.

Background

The enzymatic production of biodiesel through alcoholysis of triglycerides has become more attractive because it shows potential in overcoming the drawbacks of chemical processes. In this study, we investigate the production of biodiesel from crude, non-edible Jatropha oil and methanol to characterize Burkholderia cepacia lipase immobilized in an n-butyl-substituted hydrophobic silica monolith. We also evaluate the performance of a lipase-immobilized silica monolith bioreactor in the continuous production of biodiesel.

Results

The Jatropha oil used contained 18% free fatty acids, which is problematic in a base-catalyzed process. In the lipase-catalyzed reaction, the presence of free fatty acids made the reaction mixture homogeneous and allowed bioconversion to proceed to 90% biodiesel yield after a 12 hour reaction time. The optimal molar ratio of methanol to oil was 3.3 to 3.5 parts methanol to one part oil, with water content of 0.6% (w/w). Further experiments revealed that B. cepacia lipase immobilized in hydrophobic silicates was sufficiently tolerant to methanol, and glycerol adsorbed on the support disturbed the reaction to some extent in the present reaction system. The continuous production of biodiesel was performed at steady state using a lipase-immobilized silica monolith bioreactor loaded with 1.67 g of lipase. The yield of 95% was reached at a flow rate of 0.6 mL/h, although the performance of the continuous bioreactor was somewhat below that predicted from the batch reactor. The bioreactor was operated successfully for almost 50 days with 80% retention of the initial yield.

Conclusions

The presence of free fatty acids originally contained in Jatropha oil improved the reaction efficiency of the biodiesel production. A combination of B. cepacia lipase and its immobilization support, n-butyl-substituted silica monolith, was effective in the production of biodiesel. This procedure is easily applicable to the design of a continuous flow-through bioreactor system.  相似文献   

12.
The presence of high levels of free fatty acids (FFA) in oil is a barrier to one‐step biodiesel production. Undesirable soaps are formed during conventional chemical methods, and enzyme deactivation occurs when enzymatic methods are used. This work investigates an efficient technique to simultaneously convert a mixture of free fatty acids and triglycerides (TAG). A partial soybean hydrolysate containing 73.04% free fatty acids and 24.81% triglycerides was used as a substrate for the enzymatic production of fatty acid methyl ester (FAME). Whole‐cell Candida antarctica lipase B‐expressing Aspergillus oryzae, and Novozym 435 produced only 75.2 and 73.5% FAME, respectively. Fusarium heterosporum lipase‐expressing A. oryzae produced more than 93% FAME in 72 h using three molar equivalents of methanol. FFA and TAG were converted simultaneously in the presence of increasing water content that resulted from esterification. Therefore, F. heterosporum lipase with a noted high level of tolerance of water could be useful in the industrial production of biodiesel from feedstock that has high proportion of free fatty acids.  相似文献   

13.
Nine isolates of Botryosphaeria spp. were screened for lipases when cultivated on eight different plant seed oils and glycerol, and all produced lipases. Botryosphaeria ribis EC-01 produced highest lipase titres on soybean oil and glycerol, while eight isolates of Botryosphaeria rhodina produced significantly lower enzyme titres. B. ribis EC-01 produced lipase when grown on different fatty acids, surfactants, carbohydrates and triacylglycerols, with highest enzyme titres produced on Triton X-100-emulsified stearic (316.7 U/mL), palmitic (283.5 U/mL) and oleic (247.4 U/mg) acids, and soybean oil (105.6 U/mL), as well as castor oil (191.2 U/mg); an enhancement of 9-fold over soybean oil-grown cultures. Glycerol was also a good substrate for lipase production. The crude lipase extract was optimally active at pH 8.0 and 55 °C, stable between 30 and 55 °C and pH 1–10, and tolerant to 50% (v/v) glycerol, methanol and ethanol. The crude lipase showed affinity for substrates of short, average and long-chain fatty acids (different esters of p-nitrophenol and triacylglycerols). Zymograms developed with 4-methylumbelliferyl-butyrate showed two bands of lipolytic activity at 45 and 15 kDa. This is the first report on the production of lipases by B. ribis grown on these different carbon sources.  相似文献   

14.
The influence on lipase induction in Mucor hiemalis of different types of triglycerides containing mainly oleic acid (olive oil), erucic acid (mustard oil), or saturated fatty acids of 8 to 16 carbons (coconut oil) was studied. The fungus was grown in shake flasks in a fermentation medium containing peptone, minerals, and glucose or one of the oils as the carbon source. Maximum lipase was produced when the initial pH of the fermentation medium was kept at 4.0. Addition of Ca2+ to the medium did not increase lipase production. The optimum pH for activity of both the mycelial and extracellular lipases was found to be 7.0. The fungus produced a significant amount of lipase in the presence of glucose, but the lipase activity increased markedly when olive oil was added to the medium at the beginning of the fermentation. Addition of olive oil at a later stage did not induce as much enzyme. Studies with washed mycelia showed that a greater amount of lipase was released when olive oil was present than when glucose was present. Among the various types of triglycerides used as the carbon source, olive oil was found to be most effective in inducing the lipase. Olive oil and mustard oil fatty acids inhibited the lipase more than those of coconut oil. The lipase induced by a particular type of triglyceride did not seem to be specific for the same triglyceride, nor was it inhibited specifically by it. Irrespective of the triglyceride used in the fermentation medium, the lipase produced was most active against coconut oil triglyceride, and this specificity, as shown by lipase activities in an n-heptane system, was not found to be due to a better emulsification of this oil. The lipase of M. hiemalis can be considered to be both constitutive and inducible.  相似文献   

15.
The ability of an extracellular lipase from Pseudomonas aeruginosa KKA-5 to commence hydrolysis of castor oil in the presence of various metal chlorides, was investigated. Apart from CaCl2 (commonly used for castor oil hydrolysis), AlCl3 (group IIIB), CrCl3 (group VIA) and MgCl2 (group IIA) displayed enhanced hydrolysis capability. Specifically, our statistics show that with respect to time, when Cr3+ was used, hydrolysis of castor oil was four times faster than that of calcium, and 1.6 times faster with regards to Al3+. The chlorides of group VIII and alkali metals had no effect on hydrolysis. Group IV metal chlorides did not enhance lipase activity and inhibited castor oil hydrolysis. The effect of metal ions from other groups on lipase activity is also reported. Received 14 August 1998/ Accepted in revised form 22 October 1998  相似文献   

16.
Microbial fatty acid specificity   总被引:1,自引:0,他引:1  
Strains ofRhodotorula sp.,Candida spp. andLangermania sp. cultivated on polyunsaturated oil preferentially incorporated more unsaturated fatty acids. These fatty acids were used mainly for growth needs whereas the saturated ones accumulated in the microbial cell. The cellular oil and the remaining oil in the culture had a lower degree of unsaturation as compared to the initial oil, and a modified fatty acid composition.Candida lipolytica, in a chemostat continuous culture, incorporated C18 fatty acids in the order of C18:3>C18:2>C18:1>C18:0, and accumulated mostly the saturated ones. The specific productivity of the cellular oil and of the oil remaining in the culture medium was 0.036 and 0.487 gg−1 h−1, respectively, at dilution rateD=0.2/h.  相似文献   

17.
Four strains of Aspergillus niger were screened for lipase production. Each was cultivated on four different media differing in their contents of mineral components and sources of carbon and nitrogen. Aspergillus niger NRRL3 produced maximal activity (325U/ml) when grown in 3% peptone, 0.05% MgSO4.7H2O, 0.05% KCl, 0.2% K2HPO4 and 1% olive oil:glucose (0.5:0.5). A. niger NRRL3 lipase was partially purified by ammonium sulphate precipitation. The majority of lipase activity (48%) was located in fraction IV precipitated at 50–60% of saturation with a 18-fold enzyme purification. The optimal pH of the partial purified lipase preparation for the hydrolysis of emulsified olive oil was 7.2 and the optimum temperature was 60°C. At 70°C, the enzyme retained more than 90% of its activity. Enzyme activity was inhibited by Hg2+ and K+, whereas Ca2+ and Mn2+ greatly stimulated its activity. Additionally, the formed lipase was stored for one month without any loss in the activity.  相似文献   

18.
Summary High concentration production of an extracellular enzyme, lipase, was achieved by a fed-batch culture of Pseudomonas fluorescens. During the cultivation, temperature, pH and dissolved oxygen concentration wwre maintained at 23°C, 6.5 and 2–5 ppm, respectively. Olive oil was used as a carbon source for microbial growth. To produce lipase effectively the specific feed rate of olive oil had to be maintained in a range of 0.04–0.06 (g oil) · (g dry cell)-1 · h-1. The CO2 evolution rate was monitored to estimate the requirement of olive oil. The ratio of feed rate of olive oil to the CO2 evolution rate was varied in the range of 20–60 g oil/mol CO2. The higher value of the ratio accelerated microbial growth, but did not favour lipase production. Once the high cell concentration of 60 g/l had been achieved, the ratio was changed from 50 to 30 g oil/mol CO2 to accelerate the lipase production. By this CO2-dependent method a very high activity of lipase, 1980 units/ml, was obtained. Both the productivity and yield of lipase were prominently increased compared with a conventional batch culture.  相似文献   

19.
For thermostable lipase production by Humicola lanuginosa No. 3, a simple optimized medium consisting of (%, w/v): sorbitol, 1.0; corn steep liquor, 1.0; NaCl, 0.5; CaCl2–2H20, 0.01; Silicone Km-70 (antifoamer), 0.2; and whale oil or castor oil as a lipase inducer, 0.3, was used. The yield of the lipase was about 80 — 120U/ml after 25 hr aerobic cultivation at 45°C when the pH was maintained at 7 to 8. The acetone powder preparation of the enzyme was most active at pH 7.0 and 45°C. The enzyme retained 100% activity on incubation for 20 hr at 60°C. The enzyme was able to hydrolyze almost all forms of natural fats tested (14 kinds), coconut oil being the most rapidly hydrolyzed.  相似文献   

20.
Palm fatty acid distillates (PFAD) are by-products of the palm oil refining process. Their use as the source of fatty acids, mainly palmitate, for the biocatalytic synthesis of carbohydrate fatty acid esters was investigated. Esters could be prepared in high yields from unmodified acyl donors and non-activated free fatty acids obtained from PFAD with an immobilized Candida antarctica lipase preparation. Acetone was found as a compatible non-toxic solvent, which gave the highest conversion yields in a heterogeneous reaction system without the complete solubilization of the sugars. Glucose, fructose, and other acyl acceptors could be employed for an ester synthesis with PFAD. The synthesis of glucose palmitate was optimized with regard to the water activity of the reaction mixture, the reaction temperature, and the enzyme concentration. The ester was obtained with 76% yield from glucose and PFAD after reaction for 74 h with 150 U ml−1 immobilized lipase at 40°C in acetone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号