首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radotinib, developed as a BCR/ABL tyrosine kinase inhibitor (TKI), is approved for the second-line treatment of chronic myeloid leukemia (CML) in South Korea. However, therapeutic effects of radotinib in acute myeloid leukemia (AML) are unknown. In the present study, we demonstrate that radotinib significantly decreases the viability of AML cells in a dose-dependent manner. Kasumi-1 cells were more sensitive to radotinib than NB4, HL60, or THP-1 cell lines. Furthermore, radotinib induced CD11b expression in NB4, THP-1, and Kasumi-1 cells either in presence or absence of all trans-retinoic acid (ATRA). We found that radotinib promoted differentiation and induced CD11b expression in AML cells by downregulating LYN. However, CD11b expression induced by ATRA in HL60 cells was decreased by radotinib through upregulation of LYN. Furthermore, radotinib mainly induced apoptosis of CD11b+ cells in the total population of AML cells. Radotinib also increased apoptosis of CD11b+ HL60 cells when they were differentiated by ATRA/dasatinib treatment. We show that radotinib induced apoptosis via caspase-3 activation and the loss of mitochondrial membrane potential (ΔΨm) in CD11b+ cells differentiated from AML cells. Our results suggest that radotinib may be used as a candidate drug in AML or a chemosensitizer for treatment of AML by other therapeutics.  相似文献   

2.
Noh EM  Cho DH  Lee YR  Jeong YJ  Kim JH  Chae HS  Park J  Jung WS  Park SJ  Kim JS 《BMB reports》2011,44(11):753-757
Heme oxygenase-1 (HO-1), an inducible enzyme with broad tissue expression, is wel1-regulated in response to hematopoietic stress and preserves vascular homeostasis. We investigated the involvement of HO-1 in HL-60 cell differentiation. Dimethyl sulfoxide (DMSO) completely decreased HO-1 expression in a time-dependent manner, but clearly induced HL-60 cell differentiation, as evidenced by a marked increase in CD11b expression. Interestingly, zinc protoporphyrin (ZnPP), a strong inhibitor of HO-1, induced HL-60 cell differentiation. In contrast, treatment with cobalt protoporphyrin (CoPP), an activator of HO-1, decreased CD11b expression. Additionally, ZnPP downregulated HO-1 protein expression in HL-60 cells, whereas CoPP induced upregulation. These results suggest that HO-1 might have a negative function in DMSO-induced HL-60 cell differentiation. This study provides the first evidence that HO-1 plays an important role in DMSO-induced HL-60 cell differentiation.  相似文献   

3.
A novel sterol mesylate compound (NSC67657) was recently identified and reported by National Cancer Institute that could efficiently induce the differentiation of HL60 cells into monocytes in vitro and in vivo. The expression of many proteins would have been changed during the differentiation process, and some proteins may have played key roles in the differentiation of HL60 cell line induced by this drug. Therefore, we treated HL60 cells with NSC67657 and all‐trans retinoic acid (ATRA) to identify the differentially expressed proteins and determine their functions in cellular differentiation. Of the 45 differentially expressed protein spots investigated, 24 were either elevated or decreased in both the monocytic and granulocytic differentiating HL60 cells, 8 showed significant changes only when induced by NSC67657, and 13 showed significant changes only when induced by ATRA. After verification by RT‐PCR, Western blotting, and immunocytochemistry, only the protein ICAT was found to be elevated by NSC67657 treatment alone. Although the over‐expression of ICAT is not sufficient to induce the differentiation of HL60 cells into monocytes, it did increase the proportion of CD14+ cells in cells pretreated with NSC67657. Successful application of multiple techniques including two‐dimensional gel electrophoresis, matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry, Western blotting, and eukaryotic electroporation revealed that proteomic and molecular biological analyses provide valuable tools in drug development research. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Retinoic acid is an embryonic morphogen and dietary factor that demonstrates chemotherapeutic efficacy in inducing maturation in leukemia cells. Using HL60 model human myeloid leukemia cells, where all-trans retinoic acid (RA) induces granulocytic differentiation, we developed two emergent RA-resistant HL60 cell lines which are characterized by loss of RA-inducible G1/G0 arrest, CD11b expression, inducible oxidative metabolism and p47phox expression. However, RA-treated RA-resistant HL60 continue to exhibit sustained MEK/ERK activation, and one of the two sequentially emergent resistant lines retains RA-inducible CD38 expression. Other signaling events that define the wild-type (WT) response are compromised, including c-Raf phosphorylation and increased expression of c-Cbl, Vav1, and the Src-family kinases (SFKs) Lyn and Fgr. As shown previously in WT HL60 cells, we found that the SFK inhibitor PP2 significantly increases G1/G0 cell cycle arrest, CD38 and CD11b expression, c-Raf phosphorylation and expression of the aforementioned regulators in RA-resistant HL60. The resistant cells were potentially incapable of developing inducible oxidative metabolism. These results motivate the concept that RA resistance can occur in steps, wherein growth arrest and other differentiation events may be recovered in both emergent lines. Investigating the mechanistic anomalies in resistant cell lines is of therapeutic significance and helps to mechanistically understand the response to retinoic acid’s biological effects in WT HL60 cells.  相似文献   

5.
The cell differentiation‐inducing effect of 2‐N,N‐diethylaminocarbonyloxymethyl‐1 ‐diphenylmethyl‐4‐(3,4,5‐trimethoxybenzoyl) piperazine, hydrochloride (PMS‐1077) was determined in human leukaemic HL‐60 cells with profiling of cell proliferation, analysis of cell cycling, characterization of expression of various CD molecules and determination of phagocytotic activity of differentiated HL‐60 cells. After treatment with PMS‐1077, HL‐60 cells exhibited a decreased cell viability during which cell cycle was arrested in G0‐/G1‐phase. Flow cytometric analysis showed CD11b and CD14 were up‐regulated, whereas CD15 was unaffected. Together with the finding that PMS‐1077‐treated HL‐60 cells exhibited activities of differentiation by examining their ability of phagocytosing latex beads, an antiproliferative effect and a differentiation‐inducing role were determined for PMS‐1077 in HL‐60 cells.  相似文献   

6.
The human promyelocytic leukemia HL 60 and PLB 985 cell lines can differentiate into terminally mature neutrophil‐like cells via dimethyl sulfoxide (DMSO) induction. In this study the luminol‐dependent chemiluminescence (LCL) of both neutrophil‐like cells was analayzed and compared in response to phorbol myristate acetate (PMA) and opsonized zymosan (OZ) stimulants. It was shown that, like human blood neutrophils, both neutrophil‐like cells expressed high levels of CD11b, but unlike human blood neutrophils these cells almost lack LCL‐detectable intracellular oxidase activity. By studying the pattern of activation to OZ and PMA and priming with GM‐CSF, we concluded that there is no difference between the percentage of differentiation and function of DMSO‐induced HL 60 and PLB 985. However, the LCL capacity (area under the curve) of DMSO induced PLB 985 cells was higher than that of HL 60 cells in response to both PMA and OZ, which implies a higher capacity to generate reactive oxygen species in PLB 985 cells. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Programmed cell death-4 (PDCD4) is a recently discovered tumor suppressor protein that inhibits protein synthesis by suppression of translation initiation. We investigated the role and the regulation of PDCD4 in the terminal differentiation of acute myeloid leukemia (AML) cells. Expression of PDCD4 was markedly up-regulated during all-trans retinoic acid (ATRA)-induced granulocytic differentiation in NB4 and HL60 AML cell lines and in primary human promyelocytic leukemia (AML-M3) and CD34(+) hematopoietic progenitor cells but not in differentiation-resistant NB4.R1 and HL60R cells. Induction of PDCD4 expression was associated with nuclear translocation of PDCD4 in NB4 cells undergoing granulocytic differentiation but not in NB4.R1 cells. Other granulocytic differentiation inducers such as DMSO and arsenic trioxide also induced PDCD4 expression in NB4 cells. In contrast, PDCD4 was not up-regulated during monocytic/macrophagic differentiation induced by 1,25-dihydroxyvitamin D3 or 12-O-tetradecanoyl-phorbol-13-acetate in NB4 cells or by ATRA in THP1 myelomonoblastic cells. Knockdown of PDCD4 by RNA interference (siRNA) inhibited ATRA-induced granulocytic differentiation and reduced expression of key proteins known to be regulated by ATRA, including p27(Kip1) and DAP5/p97, and induced c-myc and Wilms' tumor 1, but did not alter expression of c-jun, p21(Waf1/Cip1), and tissue transglutaminase (TG2). Phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway was found to regulate PDCD4 expression because inhibition of PI3K by LY294002 and wortmannin or of mTOR by rapamycin induced PDCD4 protein and mRNA expression. In conclusion, our data suggest that PDCD4 expression contributes to ATRA-induced granulocytic but not monocytic/macrophagic differentiation. The PI3K/Akt/mTOR pathway constitutively represses PDCD4 expression in AML, and ATRA induces PDCD4 through inhibition of this pathway.  相似文献   

8.
GPI-80 is a member of the amidohydrolase family that has been proposed as a potential regulator of beta2-integrin-dependent leukocyte adhesion. GPI-80 is expressed mainly in human neutrophils. Our previous studies suggested that GPI-80 expression might be associated with myeloid differentiation. To verify this, we examined whether GPI-80 is expressed on the human promyelocytic leukemia cell line HL-60 following treatment with differentiation inducers. GPI-80 expression was induced in cells treated with dimethyl sulfoxide (DMSO) to stimulate differentiation down the neutrophil pathway. On the other hand, all-trans-retinoic acid (ATRA), another neutrophil-inducing reagent, induced no clear GPI-80 expression. Potent monocyte-inducing reagents such as 1alpha,25-dihydroxyvitamin D(3) or phorbol 12-myristate 13-acetate also had no significant effect on the protein expression. GPI-80-positive cells were found in the well-differentiated CD11b-positive and transferrin-receptor-negative cell population. Granulocyte colony-stimulating factor, which augments neutrophil differentiation of HL-60 cells, up-regulated GPI-80 expression in the presence of DMSO. Granulocyte/macrophage colony-stimulating factor, which is known to suppress the neutrophil maturation of cells, inhibited expression. Adhesion of DMSO-induced cells was regulated by anti-GPI-80 monoclonal antibody, similar to the regulation observed in neutrophils. These results suggest that use of DMSO to induce neutrophil differentiation provides suitable conditions for GPI-80 expression, and that this culture system may be a helpful model for further study of the regulation of GPI-80 expression during myeloid differentiation.  相似文献   

9.
Crocetin, the major carotenoid in saffron, exhibits potent anticancer effects. However, the antileukemic effects of crocetin are still unclear, especially in primary acute promyelocytic leukemia (APL) cells. In the current study, the potential antipromyelocytic leukemia activity of crocetin and the underlying molecular mechanisms were investigated. Crocetin (100 µM), like standard anti-APL drugs, all-trans retinoic acid (ATRA, 10 µM) and As2O 3 (arsenic trioxide, 50 µM), significantly inhibited proliferation and induced apoptosis in primary APL cells, as well as NB4 and HL60 cells. The effect was associated with the decreased expressions of prosurvival genes Akt and BCL2, the multidrug resistance (MDR) proteins, ABCB1 and ABCC1 and the inhibition of tyrosyl-DNA phosphodiesterase 1 (TDP1), while the expressions of proapoptotic genes CASP3, CASP9, and BAX/BCL2 ratio were significantly increased. In contrast, crocetin at relatively low concentration (10 µM), like ATRA (1 µM) and As 2O 3 (0.5 µM), induced differentiation of leukemic cells toward granulocytic pattern, and increased the number of differentiated cells expressing CD11b and CD14, while the number of the immature cells expressing CD34 or CD33 was decreased. Furthermore, crocetin suppressed the expression of clinical marker promyelocytic leukemia/retinoic acid receptor-α ( PML/RARα) in NB4 and primary APL cells, and reduced the expression of histone deacetylase 1 ( HDAC1) in all leukemic cells. The results suggested that crocetin can be considered as a candidate for future preclinical and clinical trials of complementary APL treatment.  相似文献   

10.
Retinoids and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) induce differentiation of myeloid leukemia cells into granulocyte and macrophage lineages, respectively. All-trans retinoic acid (ATRA), which is effective in the treatment of acute promyelocytic leukemia, can induce differentiation of other types of myeloid leukemia cells, and combined treatment with retinoid and 1,25(OH)2D3 effectively enhances the differentiation of leukemia cells into macrophage-like cells. Recent work has classified macrophages into M1 and M2 types. In this study, we investigated the effect of combined treatment with retinoid and 1,25(OH)2D3 on differentiation of myeloid leukemia THP-1 and HL60 cells. 9-cis Retinoic acid (9cRA) plus 1,25(OH)2D3 inhibited proliferation of THP-1 and HL60 cells and increased myeloid differentiation markers including nitroblue tetrazolium reducing activity and expression of CD14 and CD11b. ATRA and the synthetic retinoic acid receptor agonist Am80 exhibited similar effects in combination with 1,25(OH)2D3 but less effectively than 9cRA, while the retinoid X receptor agonist HX630 was not effective. 9cRA plus 1,25(OH)2D3 effectively increased expression of M2 macrophage marker genes, such as CD163, ARG1 and IL10, increased surface CD163 expression, and induced interleukin-10 secretion in myeloid leukemia cells, while 9cRA alone had weaker effects on these phenotypes and 1,25(OH)2D3 was not effective. Taken together, our results demonstrate selective induction of M2 macrophage markers in human myeloid leukemia cells by combined treatment with 9cRA and 1,25(OH)2D3.  相似文献   

11.
All-trans-retinoic acid (ATRA) and arsenic trioxide (ATO) induce differentiation and apoptosis in acute promyelocytic leukemia (APL) cells. Here we investigated the role and regulation of death-associated protein-5 (DAP5/p97/NAT1), a novel inhibitor of translational initiation, in APL cell differentiation and apoptosis. We found that ATRA markedly induced DAP5/p97 protein and gene expression and nuclear translocation during terminal differentiation of APL (NB4) and HL60 cells but not differentiation-resistant cells (NB4.R1 and HL60R), which express very low levels of DAP5/p97. At the differentiation inducing concentrations, ATO (<0.5 μM), dimethyl sulfoxide, 1,25-dihydroxy-vitamin-D3, and phorbol-12-myristate 13-acetate also significantly induced DAP5/p97 expression in NB4 cells. However, ATO administered at apoptotic doses (1–2 μM) induced expression of DAP5/p86, a proapoptotic derivative of DAP5/p97. ATRA and ATO-induced expression of DAP5/p97 was associated with inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Furthermore, DAP5/p97 expression was upregulated by inhibition of the PI3K/Akt/mammalian target of rapamycin (mTOR) pathway via LY294002 and via rapamycin. Finally, knockdown of DAP5/p97 expression by small interfering RNA inhibited ATRA-induced granulocytic differentiation and ATO-induced apoptosis. Together, our data reveal new roles for DAP5/p97 in ATRA-induced differentiation and ATO-induced apoptosis in APL and suggest a novel regulatory mechanism by which PI3K/Akt/mTOR pathway inhibition mediates ATRA- and ATO-induced expression of DAP5/p97. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. B. Ozpolat and U. Akar contributed equally.  相似文献   

12.
以往的研究表明GPI-80的表达可能与髓系细胞的分化相关。DMSO及RA是两种不同的中性粒细胞的诱导分化剂,均可刺激HL-60白血病细胞向中性粒细胞分化。GPI-80是人糖基化磷脂酰肌醇锚糖蛋白,被认为是潜在的β2-黏合素分子依赖的白细胞黏附的调节剂,主要在人中性粒细胞上表达。本研究通过RT—PCR、流式细胞仪及Western—blot分析,检测分化细胞的GPI-80表达,并分析GPI-80的表达与CD11b及CD71表达之间的关系。结果表明GPI-80在RA诱导的类中性粒细胞上只有mRNA水平上的微弱表达,用流式细胞仪和Western—blot分析均检测不到,且RA可抑制GPI-80的表达;相反GPI-80在DMSO诱导的类中性粒细胞上有明显的表达,且随DMSO的浓度增加及诱导时间的延长而增强。GPI-80的表达出现在CD11b上调表达及CD71下调表达之后,提示GPI-80表达与DMSO诱导分化的类中性粒细胞的成熟密切相关。RA不能明确诱导GPI-80的表达,反而抑制GPI-80的表达,提示可能两者诱导HL-60细胞分化时所激活的信号传递通路不同。  相似文献   

13.
We recently revealed that myeloid master regulator SPI1/PU.1 directly represses metallothionein (MT) 1G through its epigenetic activity of PU.1, but the functions of MT1G in myeloid differentiation remain unknown. To clarify this, we established MT1G-overexpressing acute promyelocytic leukemia NB4 (NB4MTOE) cells, and investigated whether MT1G functionally contributes to all-trans retinoic acid (ATRA)-induced NB4 cell differentiation. Real-time PCR analyses demonstrated that the inductions of CD11b and CD11c and reductions in myeloperoxidase and c-myc by ATRA were significantly attenuated in NB4MTOE cells. Morphological examination revealed that the percentages of differentiated cells induced by ATRA were reduced in NB4MTOE cells. Since G1 arrest is a hallmark of ATRA-induced NB4 cell differentiation, we observed a decrease in G1 accumulation, as well as decreases in p21WAF1/CIP1 and cyclin D1 inductions, by ATRA in NB4MTOE cells. Nitroblue tetrazolium (NBT) reduction assays revealed that the proportions of NBT-positive cells were decreased in NB4MTOE cells in the presence of ATRA. Microarray analyses showed that the changes in expression of several myeloid differentiation-related genes (GATA2, azurocidin 1, pyrroline-5-carboxylate reductase 1, matrix metallopeptidase -8, S100 calcium-binding protein A12, neutrophil cytosolic factor 2 and oncostatin M) induced by ATRA were disturbed in NB4MTOE cells. Collectively, overexpression of MT1G inhibits the proper differentiation of myeloid cells.  相似文献   

14.
Acute promyelocytic leukemia (APL) is characterized by a specific chromosome translocation t(15;17), which results in the fusion of the promyelocytic leukemia gene (PML) and retinoic acid receptor alpha gene (RARalpha). APL can be effectively treated with the cell differentiation inducer all-trans retinoic acid (ATRA). NB4 cells, an acute promyelocytic leukemia cell line, have the t(15;17) translocation and differentiate in response to ATRA, whereas HL-60 cells lack this chromosomal translocation, even after differentiation by ATRA. To identify changes in the gene expression patterns of promyelocytic leukemia cells during differentiation, we compared the gene expression profiles in NB4 and HL-60 cells with and without ATRA treatment using a cDNA microarray containing 10,000 human genes. NB4 and HL-60 cells were treated with ATRA (10(-6)M) and total RNA was extracted at various time points (3, 8, 12, 24, and 48h). Cell differentiation was evaluated for cell morphology changes and CD11b expression. PML/RARalpha degradation was studied by indirect immunofluoresence with polyclonal PML antibodies. Typical morphologic and immunophenotypic changes after ATRA treatment were observed both in NB4 and HL-60 cells. The cDNA microarray identified 119 genes that were up-regulated and 17 genes that were down-regulated in NB4 cells, while 35 genes were up-regulated and 36 genes were down-regulated in HL60 cells. Interestingly, we did not find any common gene expression profiles regulated by ATRA in NB4 and HL-60 cells, even though the granulocytic differentiation induced by ATRA was observed in both cell lines. These findings suggest that the molecular mechanisms and genes involved in ATRA-induced differentiation of APL cells may be different and cell type specific. Further studies will be needed to define the important molecular pathways involved in granulocytic differentiation by ATRA in APL cells.  相似文献   

15.
16.
By means of an unbiased, automated fluorescence microscopy-based screen, we identified the epidermal growth factor receptor (EGFR) inhibitors erlotinib and gefitinib as potent enhancers of the differentiation of HL-60 acute myeloid leukemia (AML) cells exposed to suboptimal concentrations of vitamin A (all-trans retinoic acid, ATRA) or vitamin D (1α,25-hydroxycholecalciferol, VD). Erlotinib and gefitinib alone did not promote differentiation, yet stimulated the acquisition of morphological and biochemical maturation markers (including the expression of CD11b and CD14 as well as increased NADPH oxidase activity) when combined with either ATRA or VD. Moreover, the combination of erlotinib and ATRA or VD synergistically induced all the processes that are normally linked to terminal hematopoietic differentiation, namely, a delayed proliferation arrest in the G0/G1 phase of the cell cycle, cellular senescence, and apoptosis. Erlotinib potently inhibited the (auto)phosphorylation of mitogen-activated protein kinase 14 (MAPK14, best known as p38MAPK) and SRC family kinases (SFKs). If combined with the administration of ATRA or VD, the inhibition of p38MAPK or SFKs with specific pharmacological agents mimicked the pro-differentiation activity of erlotinib. These data were obtained with 2 distinct AML cell lines (HL-60 and MOLM-13 cells) and could be confirmed on primary leukemic blasts isolated from the circulation of AML patients. Altogether, these findings point to a new regimen for the treatment of AML, in which naturally occurring pro-differentiation agents (ATRA or VD) may be combined with EGFR inhibitors.  相似文献   

17.
HL60 cells induced to differentiate into myeloid cells by retinoic acid exhibited a 300-fold increase in transglutaminase (TGase) activity which peaked on day 5. HL60 cells induced to differentiate into monocytes by a phorbol ester tetradecanoylphorbol-12-myristate-13-acetate (TPA) had a greater than 840-fold increase in TGase activity on day 7. In contrast, cells induced to differentiate along the myeloid pathway by dimethyl sulfoxide (DMSO) exhibited no increase in TGase activity. Elevation of TGase activity appears to be characteristic of monocyte differentiation and retinoic acid-induced myeloid differentiation but not of myeloid differentiation in response to DMSO.  相似文献   

18.
Leukocyte antigen CD38 expression is an early marker of all-trans retinoic acid (ATRA) stimulated differentiation in the leukemic cell line HL-60. It promotes induced myeloid maturation when overexpressed, whereas knocking it down is inhibitory. It is a type II membrane protein with an extracellular C-terminal enzymatic domain with NADase/NADPase and ADPR cyclase activity and a short cytoplasmic N-terminal tail. Here we determined whether CD38 enzymatic activity or the cytoplasmic tail is required for ATRA-induced differentiation. Neither a specific CD38 ectoenzyme inhibitor nor a point mutation that cripples enzymatic activity (CD38 E226Q) diminishes ATRA-induced differentiation or G1/0 arrest. In contrast a cytosolic deletion mutation (CD38 Δ11–20) prevents membrane expression and inhibits differentiation and G1/0 arrest. These results may be consistent with disrupting the function of critical molecules necessary for membrane-expressed CD38 signal transduction. One candidate molecule is the Src family kinase Fgr, which failed to undergo ATRA-induced upregulation in CD38 Δ11–20 expressing cells. Another is Vav1, which also showed only basal expression after ATRA treatment in CD38 Δ11–20 expressing cells. Therefore, the ability of CD38 to propel ATRA-induced myeloid differentiation and G1/0 arrest is unimpaired by loss of its ectoenzyme activity. However a cytosolic tail deletion mutation disrupted membrane localization and inhibited differentiation. ATRA-induced differentiation thus does not require the CD38 ectoenzyme function, but is dependent on a membrane receptor function.  相似文献   

19.
Dehydroepiandrosterone (DHEA), a reversible inhibitor of glucose-6-phosphate dehydrogenase (G6PD), is increasingly taken as an antioxidative and anti-ageing supplement. This study investigated the effects of DHEA on the expression of G6PD and on the state of oxidative stress in a human promyelocytic leukaemia cell line, HL60, during the differentiation to neutrophil-like cell. This study differentiated HL60 with dimethyl sulfoxide (DMSO) in the presence (DMSO-HL60/DHEA) or absence (DMSO-HL60) of DHEA. During the differentiation, activity, mRNA and protein levels of G6PD were increased. DHEA increased these levels further. DHEA by itself suppressed the production of superoxide from DMSO-HL60 upon stimulation with phorbol myristate acetate (PMA). However, DMSO-HL60/DHEA stimulated with PMA in the absence of DHEA produced superoxide and 8-oxo-deoxyguanosine more than PMA-stimulated DMSO-HL60. After addition of H2O2, the ratio of reduced glutathione to oxidized glutathione was lower in DMSO-HL60/DHEA than in DMSO-HL60. These findings indicate that DHEA acts both as an antioxidant and as a pro-oxidant.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号