共查询到20条相似文献,搜索用时 31 毫秒
1.
Olsson MG Nilsson EJ Rutardóttir S Paczesny J Pallon J Akerström B 《Radiation research》2010,174(5):590-600
Alpha-particle irradiation of cells damages not only the irradiated cells but also nontargeted bystander cells. It has been proposed that the bystander effect is caused by oxidants and free radicals generated by the radiation. Recent studies have shown that α(1)-microglobulin protects against cell damage caused by oxidants and free radicals. Using a novel experimental system that allows irradiation of 0.02% of a human hepatoma monolayer, leaving 99.98% as bystander cells, we investigated the influence of oxidative stress and the cell-protective effects of α(1)-microglobulin during α-particle irradiation. The results showed an increase in cell death in both irradiated cells and bystander cells. A significant increase in apoptosis, oxidation markers and expression of the stress response genes heme oxygenase 1, superoxide dismutase, catalase, glutathione peroxidase 1, p21 and p53 were observed. Addition of α(1)-microglobulin reduced the amount of dead cells and inhibited apoptosis, formation of oxidation markers, and up-regulation of stress response genes. The results emphasize the role of oxidative stress in promoting bystander effects. Furthermore, the results suggest that α(1)-microglobulin protects nonirradiated cells by eliminating oxidants and free radicals generated by radiation and imply that α(1)-microglobulin can be used in radiation therapy of tumors to minimize damage to surrounding tissues. 相似文献
2.
Olsson MG Allhorn M Larsson J Cederlund M Lundqvist K Schmidtchen A Sørensen OE Mörgelin M Akerström B 《PloS one》2011,6(11):e27505
During bleeding the skin is subjected to oxidative insults from free heme and radicals, generated from extracellular hemoglobin. The lipocalin α1-microglobulin (A1M) was recently shown to have reductase properties, reducing heme-proteins and other substrates, and to scavenge heme and radicals. We investigated the expression and localization of A1M in skin and the possible role of A1M in the protection of skin tissue from damage induced by heme and reactive oxygen species. Skin explants, keratinocyte cultures and purified collagen I were exposed to heme, reactive oxygen species, and/or A1M and investigated by biochemical methods and electron microscopy. The results demonstrate that A1M is localized ubiquitously in the dermal and epidermal layers, and that the A1M-gene is expressed in keratinocytes and up-regulated after exposure to heme and reactive oxygen species. A1M inhibited the heme- and reactive oxygen species-induced ultrastructural damage, up-regulation of antioxidation and cell cycle regulatory genes, and protein carbonyl formation in skin and keratinocytes. Finally, A1M bound to purified collagen I (Kd = 0.96×10−6 M) and could inhibit and repair the destruction of collagen fibrils by heme and reactive oxygen species. The results suggest that A1M may have a physiological role in protection of skin cells and matrix against oxidative damage following bleeding. 相似文献
3.
Chakravorty A Awad MM Hiscox TJ Cheung JK Carter GP Choo JM Lyras D Rood JI 《PloS one》2011,6(7):e22762
Clostridium perfringens is the causative agent of clostridial myonecrosis or gas gangrene and produces many different extracellular toxins and enzymes, including the cysteine protease α-clostripain. Mutation of the α-clostripain structural gene, ccp, alters the turnover of secreted extracellular proteins in C. perfringens, but the role of α-clostripain in disease pathogenesis is not known. We insertionally inactivated the ccp gene C. perfringens strain 13 using TargeTron technology, constructing a strain that was no longer proteolytic on skim milk agar. Quantitative protease assays confirmed the absence of extracellular protease activity, which was restored by complementation with the wild-type ccp gene. The role of α-clostripain in virulence was assessed by analysing the isogenic wild-type, mutant and complemented strains in a mouse myonecrosis model. The results showed that although α-clostripain was the major extracellular protease, mutation of the ccp gene did not alter either the progression or the development of disease. These results do not rule out the possibility that this extracellular enzyme may still have a role in the early stages of the disease process. 相似文献
4.
Proton-enhanced carbon-13 magnetic resonance measurements have been made of the natural abundance carbon-13 carbons in hydrated Lα phase dispersions of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) codispersed with cholesterol or with the polypeptide gramicidin A′. The carbonyl group spectrum consists of a superposition of two peaks derived from the two carbonyl sites within the lipid. In the Lα phase of DMPC both carbonyl sites contribute axially symmetric spectra, one with a chemical shift anisotropy of –29 ppm and the other with a chemical shift anisotropy of less than –5 ppm. The chemical shift anisotropy of the broader carbonyl resonance was found to increase with increasing cholesterol content. However, in DMPC dispersions with gramicidin A′, the chemical shift anisotropy of the broader carbonyl signal initially increased slightly from that of pure DMPC and then decreased with increasing concentrations of gramicidin A′. The width of the narrower spectral component was essentially unaltered by cholesterol or gramicidin A′. The presence of a narrow component at all concentrations of cholesterol or gramicidin A′ suggests that it is unlikely that any significant conformational changes have occurred at the carbonyl level of the bilayer. We propose that the major effect of cholesterol or gramicidin A′ is to alter the molecular order parameter, Smol, which reflects the range of angles through which the local molecular long axis of the phospholipid is tumbling. 相似文献
5.
6.
7.
8.
Kimie Date Tomomi Yamazaki Yoko Toyoda Kumi Hoshi Haruko Ogawa 《Journal of cellular biochemistry》2020,121(2):1238-1249
α-Amylase, which plays an essential role in starch degradation, is expressed mainly in the pancreas and salivary glands. Human α-amylase is also detected in other tissues, but it is unclear whether the α-amylase is endogenously expressed in each tissue or mixed exogenously with one expressed by the pancreas or salivary glands. Furthermore, the biological significance of these α-amylases detected in tissues other than the pancreas and salivary glands has not been elucidated. We discovered that human α-amylase is expressed in intestinal epithelial cells and analyzed the effects of suppressing α-amylase expression. α-Amylase was found to be expressed at the second-highest messenger RNA level in the duodenum in human normal tissues after the pancreas. α-Amylase was detected in the cell extract of Caco-2 intestinal epithelial cells but not secreted into the culture medium. The amount of α-amylase expressed increased depending on the length of the culture of Caco-2 cells, suggesting that α-amylase is expressed in small intestine epithelial cells rather than the colon because the cells differentiate spontaneously upon reaching confluence in culture to exhibit the characteristics of small intestinal epithelial cells rather than colon cells. The α-amylase expressed in Caco-2 cells had enzymatic activity and was identified as AMY2B, one of the two isoforms of pancreatic α-amylase. The suppression of α-amylase expression by small interfering RNA inhibited cell differentiation and proliferation. These results demonstrate for the first time that α-amylase is expressed in human intestinal epithelial cells and affects cell proliferation and differentiation. This α-amylase may induce the proliferation and differentiation of small intestine epithelial cells, supporting a rapid turnover of cells to maintain a healthy intestinal lumen. 相似文献
9.
10.
Patricia Gangoiti 《FEBS letters》2010,584(3):517-2051
We previously demonstrated that ceramide-1-phosphate (C1P) stimulates fibroblast and macrophage proliferation, but the mechanisms involved in this action have only been partially described. Here we demonstrate that C1P induces translocation of protein kinase C-alpha (PKC-α) from the soluble to the membrane fraction of bone marrow-derived macrophages. Translocation of this enzyme was accompanied by its phosphorylation on Ser 657 residue. Activation of PKC-α was independent of prior stimulation of phosphatidylinositol-dependent or phosphatidylcholine-dependent phospholipase C activities, but required activation of sphingomyelin synthesis. Inhibition of PKC-α activation also blocked C1P-stimulated macrophage proliferation indicating that this enzyme is essential for the mitogenic effect of C1P. 相似文献
11.
Background
α-Actinins cross-link actin filaments, with this cross-linking activity regulating the formation of focal adhesions, intracellular tension, and cell migration. Most non-muscle cells such as fibroblasts express two isoforms, α-actinin-1 (ACTN1) and α-actinin-4 (ACTN4). The high homology between these two isoforms would suggest redundancy of their function, but recent studies have suggested different regulatory roles. Interestingly, ACTN4 is phosphorylated upon growth factor stimulation, and this loosens its interaction with actin.Methodology/Principal Findings
Using molecular, biochemical and cellular techniques, we probed the cellular functions of ACTN4 in fibroblasts. Knockdown of ACTN4 expression in murine lung fibroblasts significantly impaired cell migration, spreading, adhesion, and proliferation. Surprisingly, knockdown of ACTN4 enhanced cellular compaction and contraction force, and increased cellular and nuclear cross-sectional area. These results, except the increased contractility, are consistent with a putative role of ACTN4 in cytokinesis. For the transcellular tension, knockdown of ACTN4 significantly increased the expression of myosin light chain 2, a element of the contractility machinery. Re-expression of wild type human ACTN4 in ACTN4 knockdown murine lung fibroblasts reverted cell spreading, cellular and nuclear cross-sectional area, and contractility back towards baseline, demonstrating that the defect was due to absence of ACTN4.Significance
These results suggest that ACTN4 is essential for maintaining normal spreading, motility, cellular and nuclear cross-sectional area, and contractility of murine lung fibroblasts by maintaining the balance between transcellular contractility and cell-substratum adhesion. 相似文献12.
13.
Summary A new method for the preparation of N-methylamino acids and some of their derivatives starting from hexafluoroacetone protected amino acids is described. The new concept results in saving of steps compared to conventional protection/activation techniques. Protection and deprotection proceed without racemization. 相似文献
14.
de Medina-Redondo M Arnáiz-Pita Y Clavaud C Fontaine T del Rey F Latgé JP Vázquez de Aldana CR 《PloS one》2010,5(11):e14046
Background
The formation of the cell wall in Schizosaccharomyces pombe requires the coordinated activity of enzymes involved in the biosynthesis and modification of β-glucans. The β(1,3)-glucan synthase complex synthesizes linear β(1,3)-glucans, which remain unorganized until they are cross-linked to other β(1,3)-glucans and other cell wall components. Transferases of the GH72 family play important roles in cell wall assembly and its rearrangement in Saccharomyces cerevisiae and Aspergillus fumigatus. Four genes encoding β(1,3)-glucanosyl-transferases -gas1+, gas2+, gas4+ and gas5+- are present in S. pombe, although their function has not been analyzed.Methodology/Principal Findings
Here, we report the characterization of the catalytic activity of gas1p, gas2p and gas5p together with studies directed to understand their function during vegetative growth. From the functional point of view, gas1p is essential for cell integrity and viability during vegetative growth, since gas1Δ mutants can only grow in osmotically supported media, while gas2p and gas5p play a minor role in cell wall construction. From the biochemical point of view, all of them display β(1,3)-glucanosyl-transferase activity, although they differ in their specificity for substrate length, cleavage point and product size. In light of all the above, together with the differences in expression profiles during the life cycle, the S. pombe GH72 proteins may accomplish complementary, non-overlapping functions in fission yeast.Conclusions/Significance
We conclude that β(1,3)-glucanosyl-transferase activity is essential for viability in fission yeast, being required to maintain cell integrity during vegetative growth. 相似文献15.
16.
Syed Adnan Ali Shah Sadia Sultan Normahanim Binti Hassan Fauzia Khadija Binti Muhammad Muhammad Afifi Bin Mohd Faridz Fatimah BeBe M. Hussain Munawar Hussain Humera Syed Adnan 《Steroids》2013
Structural modification of steroids through whole-cell biocatalysis is an invaluable procedure for the production of active pharmaceutical ingredients (APIs) and key intermediates. Modifications could be carried out with regio- and stereospecificity at positions hardly available for chemical agents. Much attention has been focused recently on the biotransformation of 17α-ethynyl substituted steroidal drugs using fungi, bacteria and plant cell cultures in order to obtained novel biologically active compounds with diverse structure features. Present article includes studies on biotransformation on 17α-ethynyl substituted steroidal drugs using microorganisms and plant cell cultures. Various experimental and structural elucidation methods used in biotransformational processes are also highlighted. 相似文献
17.
Costache V Bilotto S Laguerre L Bellé R Cosson B Cormier P Morales J 《Developmental biology》2012,365(1):303-309
The eukaryotic Initiation Factor 2 (eIF2) is a key regulator of protein synthesis in eukaryotic cells, implicated in the initiation step of translation. Fertilization of the sea urchin eggs triggers a rapid increase in protein synthesis activity, which is necessary for the progress into embryonic cell cycles. Here we demonstrate that fertilization triggers eIF2α dephosphorylation, concomitant with an increase in protein synthesis and that induction of the eIF2α phosphorylation is intimately linked with an inhibition of protein synthesis and cell cycle arrest. Using a phospho-mimetic protein microinjected into sea urchin eggs, we showed that dephosphorylation of eIF2α is necessary for protein synthesis activity and cell division progression following fertilization. Our results demonstrate that regulation of eIF2α plays an important role in the protein synthesis rise that occurs during early development following fertilization. 相似文献
18.
In the central and peripheral nervous systems a heterogeneous group of proteins constituting the thrombospondin superfamily provides a cue for axonal pathfinding. They either contain or are devoid of the tripeptide RGD, and the sequence(s) and mechanism(s) which trigger in vitro their neurite-promoting activity have remained unclear. In this study, we reconsider the problem of whether sequences present in the thrombospondin type 1 repeats (TSRs), and independent of the well-known RGD-binding site, may activate integrins and account for their neurite-promoting activity. SCO-spondin is a newly identified member of the thrombospondin superfamily, which shows a multidomain organization with a great number of TSR motifs but no RGD sequence. Previous research has implicated oligopeptides derived from SCO-spondin TSRs in in-vitro development of various neuronal cell types. In this study, we investigate whether function-blocking antibodies directed against integrin subunits can block these effects in cell line B104, cloned from a neuroblastoma of the rat central nervous system. By two different approaches: flow cytometry revealing short-term effects and cell cultures revealing long-term effects, we show that: (a) activation of cell metabolism, (b) changes in cell size and structure, and (c) neurite-promoting activity induced by TSR oligopeptides are inhibited by function-blocking antibodies to 1-subunit. Using a panel of function-blocking antibodies directed against various integrin -subunits we show that the 1-subunit might be the partner of the 1-subunit in B104 cells. Thus, we demonstrate that an original sequence within a TSR motif from SCO-spondin promotes neurite outgrowth through an intracellular signal driven by integrins, independently of an RGD-binding site. 相似文献
19.
20.
Convergence and extension (C&E) cell movements are essential to shape the body axis during vertebrate gastrulation. We have used the zebrafish to assess the role of the receptor protein-tyrosine phosphatases, RPTPα and PTPε, in gastrulation cell movements. Both RPTPα and PTPε knockdown and ptpra−/− embryos show defects in C&E movements. A method was developed to track gastrulation cell movements using confocal microscopy in a quantitative manner and ptpra−/− embryos displayed reduced convergence as well as extension speeds. RPTPα and PTPε knockdowns cooperated with knockdown of a well known factor in C&E cell movement, non-canonical Wnt11. RPTPα and PTPε dephosphorylate and activate Src family kinases in various cell types in vitro and in vivo. We found that Src family kinase phosphorylation was enhanced in ptpra−/− embryos, consistent with reduced Src family kinase activity. Importantly, both ptpra−/− and RPTPα and PTPε knockdown induced C&E defects were rescued by active Fyn and Yes. Moreover, active RhoA rescued the RPTPα and PTPε knockdown and ptpra−/− induced gastrulation cell movement defects as well. Our results demonstrate that RPTPα and PTPε are essential for C&E movements in a signaling pathway parallel to non-canonical Wnts and upstream of Fyn, Yes and RhoA. 相似文献