首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Radiation exposure to immune system induces imbalance in cytokines expression involved in Th1/Th2 homeostasis perturbations. In the present study, N-acetyl tryptophan glucoside (NATG), a bacterial secondary metabolite, was evaluated for its possible radioprotective potential to immune system using J774A.1 murine macrophages. In this study, expression of IFN-γ, TNF-α, IL-10, IL-2, IL-12, IL-13 and IL-17A cytokines was analyzed in irradiated and NATG pretreated cells using ELISA assay. Results of the study indicated that irradiated macrophages (NK-1R+?cells) pretreated with NATG showed higher (p?相似文献   

2.
The features of astaxanthin impact (20 μg/mL) in the culture of human blood lymphocytes exposed to γ-radiation (1.0 Gy) on the G0, S, and G2 phases of the cell cycle were studied using Comet assay. Decrease in the level of DNA damages (Tail Moment index) under astaxanthin influence on lymphocytes irradiated in all stages of cell division was established, while, as a result of previous cytogenetic investigations, lack of the modifying action of astaxanthin after irradiation of cells in the G2 stage and radioprotective effect in the G0 stage of the mitotic cycle had been revealed. In G0 phase, the activation of the processes of apoptosis by astaxanthin in irradiated cells with high levels of genomic damages was found. The obtained data demonstrate that astaxanthin has a powerful radioprotective potential, mainly due to its apoptogenic properties.  相似文献   

3.
Immunomodulatory and cytoprotective role of RP-1 in γ-irradiated mice   总被引:2,自引:0,他引:2  
RP-1 has been reported to provide protection against lethal -irradiation in mice. The present study was undertaken to understand its mechanism of action, especially with respect to modulation of radiation-induced changes in immune cell function, plasma antioxidant potential, cell cycle perturbations, apoptosis in mouse bone marrow cells, and micronuclei frequency in mice reticulocytes. 2 Gy reduced mitogenic response of splenic lymphocytes significantly at 48 h. Pre-irradiation RP-1 treatment significantly countered the radiation-induced loss of splenocyte proliferation. RP-1 treatment, with or without radiation, suppressed macrophage activation as compared to control. Irradiation decreased plasma antioxidant status significantly (p < 0.05) at 1 and 2 h (4.8 ± 0.224 and 4.9 ± 0.057 mM Fe2+) as compared to control (6.29 ± 0.733 mM Fe2+) that was countered by RP-1 pre-treatment significantly (p < 0.05). RP-1 and irradiation individually caused G2 delay in bone marrow cells. RP-1 pre-treatment augmented radiation-induced G2 delay and elicited significant (p < 0.05) recovery in S phase fraction at 48 h in comparison to irradiated group. Radiation-induced apoptosis (3%) was significantly higher than the control. RP-1 pre-treatment further enhanced apoptosis frequency (7.2%) in bone marrow cells. RP-1 pre-treatment significantly (p < 0.05) reduced (1.23%) the radiation-induced MN frequency (2.9%) observed at 48 h post-irradiation interval. Since the radioprotective manifestation of RP-1 is mediated through multiple mechanisms, needs further investigation.  相似文献   

4.
Exponentially growing human erythroleukemia K562 cells were synchronized by centrifugal elutriation prior to and after Co60 γ-irradiation (4 Gy). Forward scatter flow cytometry used for size analysis revealed the increase of an early apoptotic cell population ranging from lower (0.05 C-value) to higher DNA content (∼1 C) as the cells progressed through the S phase. The increase in cellular DNA content expressed in C-values correlated with apoptotic chromatin changes manifested as many small apoptotic bodies in early S phase and larger but less numerous disintegrated apoptotic bodies in late S phase. Most significant changes after exposure to γ-irradiation took place in early S phase resulting in an increase of nuclear size by more than 50%. Cell fractions containing irradiated cells showed enhanced growth arrest at 2.4 C-value, which was accompanied by apoptosis. Apoptotic cell cycle arrest near to the G1/G0 checkpoint and apoptotic changes indicate that the radiation resistance of K562 cells is related to the bypass of the early stage of the p53 apoptotic pathway. Apoptotic changes in chromatin structure induced by γ-irradiation indicate that these injury-specific changes can be identified and distinguished from chromatin changes induced by UV radiation or heavy metals.  相似文献   

5.
6.
Radiotherapy is one of the most effective modalities for treatment of neoplastic diseases. Radiation damage is to a large extent caused by overproduction of reactive oxygen species. To improve the therapeutic index, identifying effective substances for prevention or treatment of postirradiation intestinal and bone marrow injury should be prompted. This study was designed to evaluate the protective effects of cimetidine on the in rats exposed to γ-irradiation (5 Gy) and exploring the B-cell lymphoma 2 (Bcl2)/Bcl2 associated X (bax) pathway as a probable underlying mechanism. Eighteen adult male rats were randomly grouped into three: control, untreated irradiated rats, and irradiated rats pretreated with cimetidine. Seven days postirradiation the rats were culled, the bone marrow (BM) and jejunum tissue samples were collected for biochemical, histological, and immunohistological evaluation of BM cell count (BMCs), intestinal fibrosis, oxidative stress, tumor necrosis factor-α, Bcl2, and Bax. Cimetidine pretreatment significantly reversed the loss of BMCs, intestinal lining destruction, and fibrosis seen in the untreated irradiated rats and significantly decreased the underlying oxidative stress, inflammation, and Bax/Bcl2 ratio. There was a significant differential correlation between Bax/Bcl2 ratio, tissue oxidative stress level, and tissue injury. Cimetidine represents a very promising radioprotective agent with a potential differential beneficial effect on both cancer cells (inducing apoptosis) as previously proved through different studies and adjacent healthy cells (providing radioprotection via inhibiting apoptosis) as clearly demonstrated through this study, via its antioxidant effect and subsequent regulation of type 2 apoptotic pathway through modulation of Bax/Bcl2 ratio.  相似文献   

7.
Objectives: Photodynamic treatment (PDT) of human lung carcinoma cells A549 (p53+/+) and H1299 (p53?/?) induces fast but transient stalling of proteasome activity. We have explored the possibility of prolonging this effect by combining PDT with drugs capable of sustaining the stall, and promote apoptosis of surviving cells. We show that aspirin can be used to accomplish this. Materials and methods: Cells were irradiated at doses ranging from 0.54 to 1.10 J cm?2, and subsequently were incubated with aspirin at either high (10 and 5 mm ) or low concentration (2.5 and 1.5 mm ). Photofrin concentration and incubation time were constant (2.5 μg/ml and 16 h). Under these conditions, we analysed cell viability, colony‐forming efficiency, cycle profile, expression patterns of specific proteins and ubiquitination state, after individual or combined administration. Results: Treatment with either PDT or aspirin, rapidly induced proteasome malfunction and accumulation of cells in G2M, but did not induce apoptosis. However, when aspirin was added to cells (even at low concentrations) after PDT, the proteasome block was sustained. Moreover, significant cytotoxic effects, including apoptosis, were observed along with cytostatic effects (G2M accumulation/decreased colony formation). Conclusions: Combination of PDT and low‐toxicity drugs (such as aspirin) resulted in protracted inhibition of proteasome activity and induced apoptosis even in apoptosis‐resistant cancer cells.  相似文献   

8.

Aims

Insulin-like growth factor-1 (IGF-1) is a polypeptide protein hormone, similar in molecular structure to insulin, which plays an important role in cell migration, cell cycle progression, cell survival and proliferation. In this study, we investigated the possible mechanisms of IGF-1 mediated cell cycle redistribution and apoptosis of vascular endothelial cells.

Method

Human umbilical vein endothelial cells (HUVECs) were pretreated with 0.1, 0.5, or 2.5 μg/mL of IGF-1 for 30 min before the addition of Ang II. Cell cycle redistribution and apoptosis were examined by flow cytometry. Expression of Ang II type 1 (AT1) mRNA and cyclin E protein were determined by RT-PCR and Western blot, respectively.

Results

Ang II (1 μmol/L) induced HUVECs arrested at G0/G1, enhanced the expression level of AT1 mRNA in a time-dependent manner, reduced the enzymatic activity of nitric oxide synthase (NOS) and nitric oxide (NO) content as well as the expression level of cyclin E protein. However, IGF-1 enhanced NOS activity, NO content, and the expression level of cyclin E protein, and reduced the expression level of AT1 mRNA. L-NAME significantly counteracted these effects of IGF-1.

Conclusions

Our data suggests that IGF-1 can reverse vascular endothelial cells arrested at G0/G1 and apoptosis induced by Ang II, which might be mediated via a NOS-NO signaling pathway and is likely associated with the expression levels of AT1 mRNA and cyclin E proteins.  相似文献   

9.
Positive health effects of tea (Camellia sinensis) on a wide range of physiological problems and diseases are well known and are in part due to its copious antioxidant content. The effect of black tea extract (BTE), which is rich in polyphenolic antioxidants, against the consequences of radiation exposure has not been properly identified. The functional properties of BTE were analyzed and its radioprotective effect on V79 cells was explored in the present study. BTE scavenged free radicals and inhibited Fenton reaction-mediated 2-deoxyribose degradation and lipid peroxidation in a dose-dependent fashion, establishing its antioxidant properties. The radioprotective effects of BTE on strand break induction in pBR322 plasmid DNA were 100 % at 80 μg/ml and higher. In V79 cells, BTE was effective in decreasing the frequency of radiation-induced micronucleated cells and the yields of reactive oxygen species (ROS) and also in restoring the integrity of cellular mitochondrial membrane potential significantly. BTE exerted maximum protection against radiation-induced damage in V79 at a dose of 5 μg/ml. Due to the functional properties of BTE-flavonoids, which have been identified by HPLC, it is envisaged that the key player in radioprotection is elimination of ROS.  相似文献   

10.
Ardipusilloside III is a saponin newly isolated from Ardisia pusilla A.DC. Since saponins have exhibited broad anti-cancer and pro-apoptotic activity, we investigated the ability of ardipusilloside III to induce apoptosis in human glioblastoma U251MG cells, as well as the involvement of apoptotic signaling pathways. Ardipusilloside III markedly suppressed proliferation of U251MG cells in a time- and dose-dependent manner (P < 0.05, IC50 = 8.2 μg/ml), but did not affect the growth of primary cultures of human astrocytes. Ardipusilloside III-treated U251MG cells underwent typical apoptotic changes. Exposure to a low dose of ardipusilloside III provoked G2/M-phase cell cycle arrest, which preceded apoptosis characterized by the appearance of cells with sub-G1 DNA content. However, a higher dose of ardipusilloside III induced apoptosis without first causing cell cycle arrest. In addition, ardipusilloside III exposure resulted in time-dependent BAD dephosphorylation and cleavage as well as activation of caspase-8 and caspase-3. Therefore, both the intrinsic pathway of apoptosis, mediated by BAD dephosphorylation and cleavage, and the extrinisic pathway of apoptosis, mediated by caspase-8 and caspase-3 activation, were involved in ardipusilloside III-induced apoptosis. These data suggest that ardipusilloside III is a reliable candidate for chemotherapeutic treatment of human glioblastomas, and should be investigated further. Hong Lin, Xiang Zhang, Guang Cheng, and Hai-Feng Tang contributed equally to the work.  相似文献   

11.
Essentially every population of cancer cells within a tumor is heterogeneous, especially with regard to chemosensitivity and resistance. In the present study, we utilized the fluorescence ubiquitination-based cell cycle indicator (FUCCI) imaging system to investigate the correlation between cell-cycle behavior and apoptosis after treatment of cancer cells with chemotherapeutic drugs. HeLa cells expressing FUCCI were treated with doxorubicin (DOX) (5 μM) or cisplatinum (CDDP) (5 μM) for 3 h. Cell-cycle progression and apoptosis were monitored by time-lapse FUCCI imaging for 72 h. Time-lapse FUCCI imaging demonstrated that both DOX and CDDP could induce cell cycle arrest in S/G2/M in almost all the cells, but a subpopulation of the cells could escape the block and undergo mitosis. The subpopulation which went through mitosis subsequently underwent apoptosis, while the cells arrested in S/G2/M survived. The present results demonstrate that chemoresistant cells can be readily identified in a heterogeneous population of cancer cells by S/G2/M arrest, which can serve in future studies as a visible target for novel agents that kill cell-cycle-arrested cells.  相似文献   

12.
To investigate the mechanism by which nitric oxide (NO) induces cell death in colon cancer cells, we compared two types of colon cancer cells with different p53 status: HCT116 (p53 wild-type) cells and SW620 (p53-deficient) cells. We found that S-nitrosoglutathione (GSNO), the NO donor, induced apoptosis in both types of colon cancer cells. However, SW620 cells were much more susceptible than HCT116 cells to apoptotic death by NO. We investigated the role of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 kinase on NO-induced apoptosis in both types of colon cancer cells. GSNO treatment effectively stimulated activation of the ERK1/2 and p38 kinase in both types of cells. In HCT116 cells, pretreatment with PD98059, an inhibitor of ERK1/2, or SB203580, an inhibitor of p38 kinase, had no marked effect on GSNO-induced apoptosis. However, in SW620 cells, SB203580 significantly reduced the NO-induced apoptosis, whereas PD098059 increases NO-induced apoptosis. Furthermore, we found evidence of cell cycle arrest of the G0/G1 phase in SW620 cells but not in HCT116 cells. Inhibition of ERK1/2 with PD098059, or of p38 kinase with SB203580, reduced the GSNO-induced cell cycle arrest of the G0/G1 phase in SW620 cells. We therefore conclude that NO-induced apoptosis in colon cancer cells is mediated by a p53-independent mechanism and that the pathways of ERK1/2 and p38 kinase are important in NO-induced apoptosis and in the cell cycle arrest of the G0/G1 phase.  相似文献   

13.
Several responses of synchronized populations of HeLa S3 cells were measured after irradiation with 220 kev x-rays at selected times during the division cycle. (1) Survival (colony-forming ability) is maximal when cells are irradiated in the early post-mitotic (G1) and the pre-mitotic (G2) phases of the cycle, and minimal in the mitotic (M) and late G1 or early DNA synthetic (S) phases. (2) Markedly different growth patterns result from irradiation in different phases: (a) Prolongation of interphase (division delay) is minimal when cells are irradiated early in G1 and rises progressively through the remainder of the cycle. (b) Cells irradiated while in mitosis are not delayed in that division, but the succeeding division is delayed. (c) Persistence of cells as metabolizing entities does not depend on the phase of the division cycle in which they are irradiated. (3) Characteristic perturbations of the normal DNA synthetic cycle occur: (a) Cells irradiated in M suffer a small delay in the onset of S, a slight prolongation of S, and a slight depression in the rate of DNA synthesis; the major delay occurs in G2. (b) Cells irradiated in G1 show no delay in the onset of S, and essentially no alteration in the duration or rate of DNA synthesis; G2 delay is minimal. (c) Cells irradiated in S suffer an appreciable S prolongation and a decreased rate of DNA synthesis; G2 delay is shorter than S delay.  相似文献   

14.
To better understand how the flow cytometric bromodeoxyuridine (BrdUrd)-pulse-chase method detects perturbed cell kinetics we applied it to measure cell cycle progression delays following exposure to ionizing radiation. Since this method will allow both the use of asynchronous cell populations and the determination of the alterations in cell cycle progression specific to cells irradiated in given cell cycle phases, it has a significant advantage over laborious synchronization methods. Exponentially growing Chinese hamster ovary (CHO) K1 cells were irradiated with graded doses of X-rays and pulse-labelled with BrdUrd immediately thereafter. Cells were subcultured in a BrdUrd-free medium for various time intervals and prepared for flow cytometric analysis. Of five flow cytometric parameters examined, only those that involved cell transit through G2, i.e. the fraction of BrdUrd-negative G2 cells and the fraction of BrdUrd-positive cells that had not divided, showed radiation dose-dependent delays. The magnitude of the effects indicates that the cells irradiated in G2 and in S are equally delayed. S phase transit of cells irradiated in S or in G1 did not appear to be affected. There were apparent changes in flow of cells out of G1, which could be explained by the delayed entry of G2 cells into the compartment because of G2 arrest. Thus, in asynchronous cells the method was able to detect G2 delay in those cells irradiated in S and G2 phases and demonstrate the absence of cell-cycle delays in other phases.  相似文献   

15.
Background information. Primordial germ cells in developing male and female gonads are responsive to somatic cell cues that direct their sex‐specific differentiation into functional gametes. The first divergence of the male and female pathways is a change in cell cycle state observed from 12.5 dpc (days post coitum) in mice. At this time XY and XX germ cells cease mitotic division and enter G1/G0 arrest and meiosis prophase I respectively. Aberrant cell cycle regulation at this time can lead to disrupted ovarian development, germ cell apoptosis, reduced fertility and/or the formation of germ cell tumours. Results. In order to unravel the mechanisms utilized by germ cells to achieve and maintain the correct cell cycle states, we analysed the expression of a large number of cell cycle genes in purified germ cells across the crucial time of sex differentiation. Our results revealed common signalling for both XX and XY germ cell survival involving calcium signalling. A robust mechanism for apoptosis and checkpoint control was observed in XY germ cells, characterized by p53 and Atm (ataxia telangiectasia mutated) expression. Additionally, a member of the retinoblastoma family and p21 were identified, linking these factors to XY germ cell G1/G0 arrest. Lastly, in XX germ cells we observed a down‐regulation of genes involved in both G1‐ and G2‐phases of the cell cycle consistent with their entry into meiosis. Conclusion. The present study has provided a detailed analysis of cell cycle gene expression during fetal germ cell development and identified candidate factors warranting further investigation in order to understand cases of aberrant cell cycle control in these specialized cells.  相似文献   

16.
The present study was undertaken to investigate antioxidant, antigenotoxic, and antiproliferative activity of butanol fraction (Bmbu) from bark of medicinal plant Butea monosperma. Antioxidant potency of Bmbu was examined by various in vitro assays. It was also investigated for antigenotoxic activity using Escherichia coli. PQ37 employing SOS chromotest. Further, cytotoxic and apoptosis inducing activity of Bmbu was evaluated in MCF‐7 breast cancer cells. Bmbu showed potent free radical scavenging ability in ABTS assay (IC50 56.70 μg/ml) and anti‐lipid peroxidation ability (IC50 40.39 μg/ml). 4NQO and H2O2 induced genotoxicity was suppressed by Bmbu in SOS chromotest by 74.26% and 82.02% respectively. It also inhibited the growth of MCF‐7 cells with GI50 value of 158.71 μg/ml. Induction of apoptosis in MCF‐7 cells by Bmbu treatment was deciphered using confocal microscopy, flow cytometry, and neutral comet assay. Bmbu treatment increased cell population in sub‐G1 phase (69.6%) indicating apoptotic cells. Further, Bmbu treatment resulted in increased reactive oxygen species generation and decreased mitochondrial membrane potential indicating involvement of mitochondrial dependent pathway of apoptosis. HPLC profiling showed the presence of polyphenols such as ellagic acid, catechin, quercetin, and gallic acid as its major constituents. Consequently, it is suggested that the phytoconstituents from this plant may be further exploited for development of novel drug formulation with possible therapeutic implication.  相似文献   

17.
Exposure of asynchronously growing human HeLa cervical carcinoma cells to roscovitine (ROSC), a selective cyclin‐dependent kinases (CDKs) inhibitor, arrests their progression at the transition between G2/M and/or induces apoptosis. The outcome depends on the ROSC concentration. At higher dose ROSC represses HPV‐encoded E7 oncoprotein and initiates caspase‐dependent apoptosis. Inhibition of the site‐specific phosphorylation of survivin and Bad, occurring at high‐dose ROSC treatment, precedes the onset of apoptosis and seems to be a prerequisite for cell death. Considering the fact that in HeLa cells the G1/S restriction checkpoint is abolished by E7, we addressed the question whether the inhibition of CDKs by pharmacological inhibitors in synchronized cells would be able to block the cell‐cycle in G1 phase. For this purpose, we attempted to synchronize cells by serum withdrawal or by blocking of the mitotic apparatus using nocodazole. Unlike human MCF‐7 cells, HeLa cells do not undergo G1 block after serum starvation, but respond with a slight increase of the ratio of G1 population. Exposure of G1‐enriched HeLa cells to ROSC after re‐feeding does not block their cell‐cycle progression at G1‐phase, but increases the ratio of S‐ and G2‐phase, thereby mimicking the effect on asynchronously growing cells. A quite different impact is observed after treatment of HeLa cells released from mitotic block. ROSC prevents their cell cycle progression and cells transiently accumulate in G1‐phase. These results show that inhibition of CDKs by ROSC in cells lacking the G1/S restriction checkpoint has different outcomes depending on the cell‐cycle status prior to the onset of treatment. J. Cell. Biochem. 106: 937–955, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Erythropoiesis in vitro was studied with practically pure erythroid progenitor cells: CFU-E (colony-forming-units-erythroid). the isolation of CFU-e from spleens of thiamphenicol pretreated anaemic mice with the combined methods of centrifugal elutriation and Percoll density gradient centrifugation was monitored by flow cytometry. the ultimate CFU-e preparation with a density of 1.070 g/ml contained a high percentage of cells in the S phase of the cell cycle (80%). CFU-e occasionally found at a lower density of 1.065 g/ml were predominantly in the G2, + M and G1 phases. When CFU-e were cultured, the number of cells in the distinctive phases of the cell cycle changed periodically, so the cells were partly synchronized. Four periods up to 27 hr were observed by flow cytometrical screening of the cultured cells at hourly intervals. Cell-cycle times between 6 and 7 hr were found for all erythroid cell divisions. This was in agreement with results obtained from colony growth curves. Without the addition of erythropoietin cells start to degenerate after the second cell division. This experimental approach can be used for the cell kinetic modelling of erythropoiesis.  相似文献   

19.
Demenkov  P. S.  Aman  E. E.  Ivanisenko  V. A. 《Biophysics》2008,53(1):49-58
The functional (synthetic) activity of blood lymphocytes and bone marrow hematopoietic cells in ground squirrels was studied in different seasons and at different stages of the torpor-arousal cycle. The effect of γ-irradiation on animals in different physiological states was also studied. The synthetic activity of cells was estimated from the amount of active RNA per unit DNA in the cell (parameter α). The α values in lymphocytes were minimal in hibernating animals (January–March), reached a peak upon their complete awakening (April), slightly decreased in the summer activity period, and decreased further in the prehibernation autumn period (November). During winter arousals between torpor bouts, this parameter reached the same values as in summer. The dynamics of parameter α in bone marrow hematopoietic cells were generally similar: minimal values in November and higher between torpor bouts than in summer. The peak of synthetic activity of proliferating hematopoietic cells recorded upon awakening from hibernation in April was mainly due to the accumulation of cells in the G1 and G2 phases of the cell cycle, and its decrease in summer reflected prevalent transition from G2 to mitosis and then partly to G0. In the torpor-arousal-euthermia cycle, two stages of awakening were distinguished, differing considerably in most of the test parameters. The synthetic activity and the total number of blood and bone marrow cells in ground squirrels irradiated in the state of torpor did not differ significantly from those in nonirradiated torpid animals. The adverse effect of radiation in animals irradiated at the initial stage of awakening was lesser than in animals irradiated in the active state, whereas animals at the second stage of awakening proved more vulnerable to acute irradiation. The physiological state of ground squirrels exposed to ionizing radiation at different phases of the torpor-arousal-euthermia cycle plays a key role in the dynamics of qualitative and quantitative characteristics of blood system cells. The results of this study indicate that the hypometabolic state of ground squirrels during hibernation is a factor of protection from the impact of ionizing radiation on the whole body and on the immune system in particular.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号