首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
BACKGROUND: Chronic pancreatitis (CP) is a progressive inflammatory process resulting in exocrine and endocrine pancreatic insufficiency in advanced stages. Cysteine-rich secretory protein (CRISP-3) has been identified as a defense-associated molecule with predominant expression in the salivary gland, pancreas and prostate. AIMS: In this study, we investigated CRISP-3 expression in normal pancreatic tissues, chronic pancreatitis tissues, pancreatic cancer tissues and pancreatic cancer cell lines, as well as in other gastrointestinal organs. MATERIALS AND METHODS: 15 normal pancreatic tissues, 14 chronic pancreatitis tissues and 14 pancreatic cancer tissues as well as three pancreatic cancer cell lines were analyzed. Moreover, hepatocellular carcinoma and esophageal, stomach and colon cancers were also analyzed together with the corresponding normal controls. RESULTS: CRISP-3 was expressed at moderate to high levels in chronic pancreatitis tissues and at moderate levels in pancreatic cancer tissues but at low levels in normal pancreatic tissues, and was absent in three pancreatic cancer cell lines. CRISP-3 expression was below the level of detection in all cancerous gastrointestinal tissues and in all normal tissues except 2 of 16 colon tissue samples. CRISP-3 mRNA signals and immunoreactivity were strongly present in the cytoplasm of degenerating acinar cells and in small proliferating ductal cells in CP tissues and CP-like lesions in pancreatic cancer tissues. In contrast, CRISP-3 expression was weak to absent in the cytoplasm of cancer cells as well as in acinar cells and ductal cells in pancreatic cancer tissues and normal pancreatic tissues. CONCLUSION: These results reveal that the distribution of CRISP-3 in gastrointestinal tissues is predominantly in the pancreas. High levels of CRISP-3 in acinar cells dedifferentiating into small proliferating ductal cells in CP and CP-like lesions in pancreatic cancer suggests a role of this molecule in the pathophysiology of CP.  相似文献   

2.
Pancreatic fibrosis is caused by excessive deposition of extracellular matrixes of collagen and fibronectin in the pancreatic tissue as a result of repeated injury often seen in patients with chronic pancreatic diseases. The most common causative conditions include inborn errors of metabolism, chemical toxicity and autoimmune disorders. Its pathophysiology is highly complex, including acinar cell injury, acinar stress response, duct dysfunction, pancreatic stellate cell activation, and persistent inflammatory response. However, the specific mechanism remains to be fully clarified. Although the current therapeutic strategies targeting pancreatic stellate cells show good efficacy in cell culture and animal models, they are not satisfactory in the clinic. Without effective intervention, pancreatic fibrosis can promote the transformation from pancreatitis to pancreatic cancer, one of the most lethal malignancies. In the normal pancreas, the acinar component accounts for 82% of the exocrine tissue. Abnormal acinar cells may activate pancreatic stellate cells directly as cellular source of fibrosis or indirectly via releasing various substances and initiate pancreatic fibrosis. A comprehensive understanding of the role of acinar cells in pancreatic fibrosis is critical for designing effective intervention strategies. In this review, we focus on the role of and mechanisms underlying pancreatic acinar injury in pancreatic fibrosis and their potential clinical significance.  相似文献   

3.
4.
The pathogenesis of chronic pancreatitis (CP) is poorly understood. Endoplasmic reticulum (ER) stress has now been recognized as a pathogenic event in many chronic diseases. However, ER stress has not been studied in CP, although pancreatic acinar cells seem to be especially vulnerable to ER dysfunction because of their dependence on high ER volume and functionality. Here, we aim to investigate ER stress in CP, study its pathogenesis in relation to trypsinogen activation (widely regarded as the key event of pancreatitis), and explore its mechanism, time course, and downstream consequences during pancreatic injury. CP was induced in mice by repeated episodes of acute pancreatitis (AP) based on caerulein hyperstimulation. ER stress leads to activation of unfolded protein response components that were measured in CP and AP. We show sustained up-regulation of unfolded protein response components ATF4, CHOP, GRP78, and XBP1 in CP. Overexpression of GRP78 and ATF4 in human CP confirmed the experimental findings. We used novel trypsinogen-7 knock-out mice (T−/−), which lack intra-acinar trypsinogen activation, to clarify the relationship of ER stress to intra-acinar trypsinogen activation in pancreatic injury. Comparable activation of ER stress was seen in wild type and T−/− mice. Induction of ER stress occurred through pathologic calcium signaling very early in the course of pancreatic injury. Our results establish that ER stress is chronically activated in CP and is induced early in pancreatic injury through pathologic calcium signaling independent of trypsinogen activation. ER stress may be an important pathogenic mechanism in pancreatitis that needs to be explored in future studies.  相似文献   

5.
Acute pancreatitis is a serious and sometimes fatal inflammatory disease of the pancreas without any reliable treatment or imminent cure. In recent years, impaired metabolism and cytosolic Ca(2+) ([Ca(2+)](i)) overload in pancreatic acinar cells have been implicated as the cardinal pathological events common to most forms of pancreatitis, regardless of the precise causative factor. Therefore, restoration of metabolism and protection against cytosolic Ca(2+) overload likely represent key therapeutic untapped strategies for the treatment of this disease. The plasma membrane Ca(2+)-ATPase (PMCA) provides a final common path for cells to "defend" [Ca(2+)](i) during cellular injury. In this paper, we use fluorescence imaging to show for the first time that insulin treatment, which is protective in animal models and clinical studies of human pancreatitis, directly protects pancreatic acinar cells from oxidant-induced cytosolic Ca(2+) overload and inhibition of the PMCA. This protection was independent of oxidative stress or mitochondrial membrane potential but appeared to involve the activation of Akt and an acute metabolic switch from mitochondrial to predominantly glycolytic metabolism. This switch to glycolysis appeared to be sufficient to maintain cellular ATP and thus PMCA activity, thereby preventing Ca(2+) overload, even in the face of impaired mitochondrial function.  相似文献   

6.
A variety of receptors on pancreatic acinar and duct cells regulate both pancreatic exocrine secretion and intracellular processes. These receptors are potential sites of action for therapeutic agents in the treatment of pancreatitis. Cholecystokinin (CCK) receptor antagonists, which may reduce the level of metabolic "stress" on acinar cells, have been shown to mitigate the severity of acute pancreatitis in a number of models. Not all studies have shown a benefit, however, and differences may exist between different structural classes of antagonists. Because increased pancreatic stimulation due to loss of feedback inhibition of CCK has been proposed to contribute to the pain of some patients with chronic pancreatitis, CCK receptor antagonists could also be of benefit in this setting. Somatostatin and its analogs diminish pancreatic secretion of water and electrolytes and have been effective in treating pancreatic fistulas and pseudocysts. These agents are also being evaluated for their ability to reduce pain in chronic pancreatitis (perhaps by reducing ductal pressure by diminishing secretory volume) and mitigating the severity of acute pancreatitis (possibly by reducing the metabolic load on acinar cells). Recently described secretin receptor antagonists may also have therapeutic value as a means of selectively inhibiting pancreatic secretion of water and electrolytes.  相似文献   

7.
Although it is recognized that neurogenic influences contribute to progression of chronic inflammatory diseases, the molecular basis of neuroimmune interactions in the pathogenesis of chronic pancreatitis (CP) is not well defined. Here we report that responsiveness of peripheral blood mononuclear cells (PBMC) to the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is altered in CP. Expression of PACAP and its receptors in human CP was analyzed with quantitative RT-PCR, laser-capture microdissection, and immunohistochemistry. Regulation of PACAP expression was studied in coculture systems using macrophages and acinar cells. Responsiveness of donor and CP PBMC to PACAP was determined based on cytokine profiles and NF-kappaB activation of LPS- or LPS+PACAP-exposed cells. Although donor and CP PBMC responded equally to LPS, PACAP-mediated counteraction of LPS-induced cytokine response was switched from inhibiting TNF-alpha to decreasing IL-1beta and increasing IL-10 secretion. The change of PACAP-mediated anti-inflammatory pattern was associated with altered activation of NF-kappaB: compared with LPS alone, a combination of LPS and PACAP had no effect on NF-kappaB p65 nuclear translocation in CP PBMC, whereas NF-kappaB was significantly decreased in donor PBMC. According to laser-capture microdissection and coculture experiments, PBMC also contributed to generation of a PACAP-rich intrapancreatic environment by upregulating PACAP expression in macrophages encountering apoptotic pancreatic acini. The nociceptive status of CP patients correlated with pancreatic PACAP levels and with IL-10 bias of PACAP-exposed CP PBMC. Thus the ability of PBMC to produce and to respond to PACAP might influence neuroimmune interactions that regulate pain and inflammation in CP.  相似文献   

8.
In 1995, the NIH (National Institutes of Health, USA) proposed a new classification of chronic prostatitis (CP), no longer considered in the strict framework of the prostate, but based on the concept of pelvic pain. This classification introduced the term chronic pelvic pain syndrome (CPPS). The definition of this syndrome indicates that pain is sometimes associated with sexual disorders. Many surveys have demonstrated the considerable prevalence of CP/CPPS and have confirmed the impact of these diseases on quality of life, but only limited epidemiological data concerning the links between CP/CPPS and sexuality are available at the present time. The pathophysiology of sexual dysfunction associated with CP/CPPS (alteration of desire, erectile dysfunction and premature ejaculation) also remains poorly elucidated. A psychological factor is very probably involved, but many uncertainties persist concerning the other mechanisms possibly involved.  相似文献   

9.
In aerobic organisms, oxygen is essential for efficient energy production but paradoxically, produces chronic toxic stress in cells. Diverse protective systems must exist to enable adaptation to oxidative environments. Oxidative stress (OS) results when production of reactive oxidative species (ROS) exceeds the capacity of cellular antioxidant defenses to remove these toxic species. Epidemiological and clinical studies have linked environmental factors such as diet and lifestyle to cancer, diabetes, atherosclerosis, and neurodegenerative disorders. All of these conditions, as well as the aging process, are associated with OS due to elevation of ROS or insufficient ROS detoxification. Many environmental pollutants engage signaling pathways that are activated in response to OS. The same sequences of events are also associated with the etiology and early pathology of many chronic diseases. Investigations of oxidative responses in different in vivo models suggest that, in complex organisms such as mammals, organs and tissues contain distinct antioxidant systems, and this may form the basis for differential susceptibility to environmental toxic agents Thus, understanding the pathways leading to the induction of antioxidant responses will enable development of strategies to protect against oxidative damage. We shall review evidence of organ-specific antioxidant responses elicited by environmental pollutants in humans and animal models.  相似文献   

10.
Pancreatic cancer has a high mortality rate due to the absence of early symptoms and subsequent late diagnosis; additionally, pancreatic cancer has a high resistance to radio- and chemotherapy. Multiple inflammatory pathways are involved in the pathophysiology of pancreatic cancer. Melatonin an indoleamine produced in the pineal gland mediated and receptor-independent action is the pancreas and other where has both receptors. Melatonin is a potent antioxidant and tissue protector against inflammation and oxidative stress. In vivo and in vitro studies have shown that melatonin supplementation is an appropriate therapeutic approach for pancreatic cancer. Melatonin may be an effective apoptosis inducer in cancer cells through regulation of a large number of molecular pathways including oxidative stress, heat shock proteins, and vascular endothelial growth factor. Limited clinical studies, however, have evaluated the role of melatonin in pancreatic cancer. This review summarizes what is known regarding the effects of melatonin on pancreatic cancer and the mechanisms involved.  相似文献   

11.
Epiregulin belongs to the epidermal growth factor (EGF) family of polypeptides. Previous studies have underscored the important role of the EGF family of ligands and receptors in the pathology of pancreatic ductal adenocarcinoma (PDAC) and chronic pancreatitis (CP). It is not known, however, whether epiregulin may also have a role in these diseases. Therefore, in the present study we investigated the expression and function of epiregulin in five pancreatic cancer cell lines and in PDAC and CP tissue samples. Epiregulin mRNA was present at high (MIA-PaCa-2 cells) or moderate levels (ASPC-1, CAPAN-1, and T3M4) in most cells, but was below detection levels in PANC-1 cells. All the cell lines exhibited a dose-dependent increase in growth in response to recombinant human epiregulin. Epiregulin mRNA levels were increased 2.1-fold in PDAC samples (P < 0.01) and 1.7-fold in CP samples (P < 0.01), when compared with the normal controls. There was no correlation between epiregulin mRNA levels and tumor stage or grade. By in situ hybridization, a moderate to intense epiregulin mRNA signal was present in most pancreatic cancer cells in PDAC. In contrast, only a weak (normal pancreas) to moderate (CP) signals were present in the ductal and acinar cells in CP. These findings suggest that epiregulin may contribute to the pathobiology of PDAC, and may also have a role in CP.  相似文献   

12.
Hereditary pancreatitis (HP) is an autosomal dominant disease that displays the features of both acute and chronic pancreatitis. Mutations in human cationic trypsinogen (PRSS1) are associated with HP and have provided some insight into the pathogenesis of pancreatitis, but mechanisms responsible for the initiation of pancreatitis have not been elucidated and the role of apoptosis and necrosis has been much debated. However, it has been generally accepted that trypsinogen, prematurely activated within the pancreatic acinar cell, has a major role in the initiation process. Functional studies of HP have been limited by the absence of an experimental system that authentically mimics disease development. We therefore developed a novel transgenic murine model system using wild-type (WT) human PRSS1 or two HP-associated mutants (R122H and N29I) to determine whether expression of human cationic trypsinogen in murine acinar cells promotes pancreatitis. The rat elastase promoter was used to target transgene expression to pancreatic acinar cells in three transgenic strains that were generated: Tg(Ela-PRSS1)NV, Tg(Ela-PRSS1*R122H)NV and Tg(Ela-PRSS1*N29I)NV. Mice were analysed histologically, immunohistochemically and biochemically. We found that transgene expression is restricted to pancreatic acinar cells and transgenic PRSS1 proteins are targeted to the pancreatic secretory pathway. Animals from all transgenic strains developed pancreatitis characterised by acinar cell vacuolisation, inflammatory infiltrates and fibrosis. Transgenic animals also developed more severe pancreatitis upon treatment with low-dose cerulein than controls, displaying significantly higher scores for oedema, inflammation and overall histopathology. Expression of PRSS1, WT or mutant, in acinar cells increased apoptosis in pancreatic tissues and isolated acinar cells. Moreover, studies of isolated acinar cells demonstrated that transgene expression promotes apoptosis rather than necrosis. We therefore conclude that expression of WT or mutant human PRSS1 in murine acinar cells induces apoptosis and is sufficient to promote spontaneous pancreatitis, which is enhanced in response to cellular insult.  相似文献   

13.
Das D  Mukherjee S  Das AS  Mukherjee M  Mitra C 《Life sciences》2006,78(19):2194-2203
Black Tea Extract (BTE), a phytocompound has been attributed with a plethora of health-promoting actions. We have previously demonstrated that BTE inhibits chronic hepatitis in a rat model induced with high-fat and ethanol (EtOH). This study reports that BTE prevents altered pancreatic acinar cell functions, oxidative stress, inflammatory changes and DNA damage in the EtOH+cholecystokinin (CCK)-induced model of pancreatitis. The EtOH+CCK model rats were administered with BTE, and were examined the activity of pancreatic digestive enzymes (amylase and lipase), proinflammatory cytokines (IL-6 and TNF-alpha), oxidative and antioxidative enzymes (nitric oxide, NO; malondialdehyde, MDA; superoxide dismutase, SOD; catalase, CAT), antioxidant level (glutathione, GSH), histopathological changes and the integrity of genomic DNA. Results show that because of chronic EtOH treatment, serum level of amylase and lipase (two biomarkers for pancreatitis) and pancreatic levels of MDA and NO (two biomarkers of oxidative stress) increased significantly, which could be effectively blunted by BTE. BTE could normalize EtOH+CCK-induced suppressed activities of SOD and CAT, and GSH content of pancreatic tissue. Also, histopathological and inflammatory changes during EtOH+CCK-induced pancreatitis could be blunted by BTE. Furthermore, BTE could effectively reduce EtOH+CCK-induced increase in DNA fragmentation and damage. These findings suggest that BTE prevents pancreatitis caused by chronic EtOH+CCK toxicity presumably by enhancing antioxidant, anti-inflammatory and antiapoptotic activity in rats.  相似文献   

14.
Although iron is a metal involved in many vital processes due to its redox capacity, body iron overloads lead to tissue damage, including the cardiovascular system. While cardiomyopathy was the focus since the 1960s, the impact on the vasculature was comparatively neglected for about 40 years, when clinical studies correlating iron overload, oxidative stress, endothelial dysfunction, arterial stiffness and atherosclerosis reinforced an “iron hypothesis”. Due to controversial results from some epidemiological studies investigating atherosclerotic events and iron levels, well-controlled trials and animal studies provided essential data about the influence of iron, per se, on the vasculature. As a result, the pathophysiology of vascular dysfunction in iron overload have been revisited. This review summarizes the knowledge obtained from epidemiological studies, animal models and “in vitro cellular systems in recent decades, highlighting a more harmful than innocent role of iron excess for the vascular homeostasis, which supports our proposal to hereafter denominate “iron overload vasculopathy”. Additionally, evidence-based potential therapeutic targets are pointed out to be tested in pre-clinical research that may be useful in cardiovascular protection for patients with iron overload syndromes.  相似文献   

15.
In patients with chronic pancreatitis (CP) the relation among exocrine pancreatic secretion, gastrointestinal hormone release, and motility is disturbed. We studied digestive and interdigestive antroduodenal motility and postprandial gut hormone release in 26 patients with CP. Fifteen of these patients had pancreatic insufficiency (PI) established by urinary para-aminobenzoic acid test and fecal fat excretion. Antroduodenal motility was recorded after ingestion of a mixed liquid meal. The effect of pancreatic enzyme supplementation was studied in 8 of the 15 CP patients with PI. The duration of the postprandial antroduodenal motor pattern was significantly (P < 0.01) prolonged in CP patients (324 +/- 20 min) compared with controls (215 +/- 19 min). Antral motility indexes in the first hour after meal ingestion were significantly reduced in CP patients. The interdigestive migrating motor complex cycle length was significantly (P < 0.01) shorter in CP patients (90 +/- 8 min) compared with controls (129 +/- 8 min). These abnormalities were more pronounced in CP patients with exocrine PI. After supplementation of pancreatic enzymes, these alterations in motility reverted toward normal. Digestive and interdigestive antroduodenal motility are abnormal in patients with CP but significantly different from controls only in those with exocrine PI. These abnormalities in antroduodenal motility in CP are related to maldigestion.  相似文献   

16.
The study was conducted to evaluate the effects of dietary butyrate loaded clinoptilolite (CLI-B) on growth performance, pancreatic digestive enzymes, intestinal development and histomorphology, as well as antioxidant capacity of serum and intestinal mucosal in chickens. Two hundred forty 1-day-old commercial Arbor Acres broilers were randomly assigned to 4 groups: CON group (fed basal diets), SB group (fed basal diet with 0.05% sodium butyrate), CLI group (fed basal diet with 1% clinoptilolite), and CLI-B group (fed basal diet with 1% CLI-B). The results showed that supplementation of CLI-B significantly decreased (P < 0.05) feed conservation ratio at both 21 and 42 days of age, improved the pancreatic digestive enzymes activities (P < 0.05), increased the villus length and villus/crypt ratio (P < 0.05), and decreased the crypt depth of intestine (P < 0.05) as compared to the other experimental groups. Furthermore, the CLI-B environment improved the antioxidant capacity by increasing the antioxidant enzyme activities (P < 0.05) in intestine mucosal, and decreasing the NO content and iNOS activity (P < 0.05) in serum. In addition, CLI-B supplementation had improved the development of intestine and antioxidant capacity of broilers than supplementation with either clinoptilolite or butyrate sodium alone. In conclusion, 1% CLI-B supplementation improved the health status, intestine development and antioxidant capacity in broiler chickens, thus appearing as an important feed additive for the poultry industry.  相似文献   

17.
IL-1β is believed to play a pathogenic role in the development of pancreatitis. Expression of human IL-1β in pancreatic acinar cells produces chronic pancreatitis, characterized by extensive intrapancreatic inflammation, atrophy, and fibrosis. To determine if activation of trypsinogen is important in the pathogenesis of chronic pancreatitis in this model, we crossed IL-1β transgenic [Tg(IL1β)] mice with mice expressing a trypsin inhibitor that is normally produced in rat pancreatic acinar cells [pancreatic secretory trypsin inhibitor (PTSI) I]. We previously demonstrated that transgenic expression of PSTI-I [Tg(Psti1)] increased pancreatic trypsin inhibitor activity by 190%. Tg(IL1β) mice were found to have marked pancreatic inflammation, characterized by histological changes, including acinar cell loss, inflammatory cell infiltration, and fibrosis, as well as elevated myeloperoxidase activity and elevated pancreatic trypsin activity, as early as 6 wk of age. In contrast to Tg(IL1β) mice, pancreatitis was significantly less severe in dual-transgenic [Tg(IL1β)-Tg(Psti1)] mice expressing IL-1β and PSTI-I in pancreatic acinar cells. These findings indicate that overexpression of PSTI-I reduces the severity of pancreatitis and that pancreatic trypsin activity contributes to the pathogenesis of an inflammatory model of chronic pancreatitis.  相似文献   

18.

Background

Pancreatic neuritis is a histopathological hallmark of pancreatic neuropathy and correlates to abdominal neuropathic pain sensation in pancreatic adenocarcinoma (PCa) and chronic pancreatitis (CP). However, inflammatory cell subtypes that compose pancreatic neuritis and their correlation to the neuropathic pain syndrome in PCa and CP are yet unknown.

Methods

Inflammatory cells within pancreatic neuritis lesions of patients with PCa (n = 20) and CP (n = 20) were immunolabeled and colorimetrically quantified with the pan-leukocyte marker CD45, with CD68 (macrophages), CD8 (cytotoxic T-lymphocytes), CD4 (T-helper cells), CD20 (B-lymphocytes), NCL-PC (plasma cells), neutrophil elastase, PRG2 (eosinophils), anti-mast cell (MC) tryptase and correlated to pain sensation. Perineural mast cell subtypes were analyzed by double immunolabeling with MC chymase. Expression and neural immunoreactivity of protease-activated receptor type 1 (PAR-1) and type 2 (PAR-2) were analyzed in PCa and CP and correlated to pain status of the patients.

Results

In PCa and CP, nerves were predominantly infiltrated by cytotoxic T-lymphocytes (PCa: 35% of all perineural inflammatory cells, CP: 33%), macrophages (PCa: 39%, CP: 33%) and MC (PCa: 21%, CP: 27%). In both entities, neuropathic pain sensation was associated with a specific increase of perineural MC (PCa without pain: 14% vs. PCa with pain: 31%; CP without pain: 19% vs. CP with pain: 34%), not affecting the frequency of other inflammatory cell subtypes. The vast majority of these MC contained MC chymase. PAR-1 and PAR-2 expression did not correlate to the pain sensation of PCa and CP patients.

Conclusion

Pancreatic neuritis in PC and CP is composed of cytotoxic T-lymphocytes, macrophages and MC. The specific enrichment of MC around intrapancreatic nerves in neuropathic pain due to PCa and CP suggests the presence of MC-induced visceral hypersensitivity in the pancreas. Therefore, pancreatic and enteric neuropathies seem to share a similar type of neuro-immune interaction in the generation of visceral pain.  相似文献   

19.
We recently found that pancreatic acinar cells isolated from normal adult mouse can transdifferentiate into insulin-secreting cells in vitro. Using two different animal models of type 1 diabetes, we show here that insulin-secreting cells can also be generated from pancreatic acinar cells of rodents in the diabetic state with absolute insulin deficiency. When pancreatic acinar cells of streptozotocin-treated mice were cultured in suspension in the presence of epidermal growth factor and nicotinamide under low-serum condition, expressions of insulin genes gradually increased. In addition, expressions of other pancreatic hormones, including glucagon, somatostatin, and pancreatic polypeptide, were also induced. Analysis by the Cre/loxP-based direct cell lineage tracing system revealed that these newly made cells originated from amylase-expressing pancreatic acinar cells. Insulin secretion from the newly made cells was significantly stimulated by high glucose and other secretagogues. In addition, insulin-secreting cells were generated from pancreatic acinar cells of Komeda diabetes-prone rats, another animal model of type 1 diabetes. The present study demonstrates that insulin-secreting cells can be generated by transdifferentiation from pancreatic acinar cells of rodents in the diabetic state and further suggests that pancreatic acinar cells represent a potential source of autologous transplantable insulin-secreting cells for treatment of type 1 diabetes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号