首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Archaeal and eukaryotic box C/D RNPs catalyze the 2'-O-methylation of ribosomal RNA, a modification that is essential for the correct folding and function of the ribosome. Each archaeal RNP contains three core proteins--L7Ae, Nop5, and fibrillarin (methyltransferase)--and a box C/D sRNA. Base-pairing between the sRNA guide region and the rRNA directs target site selection with the C/D and related C'/D' motifs functioning as protein binding sites. Recent structural analysis of in vitro assembled archaeal complexes has produced two divergent models of box C/D sRNP structure. In one model, the complex is proposed to be monomeric, while the other suggests a dimeric sRNP. The position of the RNA in the RNP is significantly different in each model. We have used UV-cross-linking to characterize protein-RNA contacts in the in vitro assembled Pyrococcus furiosus box C/D sRNP. The P. furiosus sRNP components assemble into complexes that are the expected size of di-sRNPs. Analysis of UV-induced protein-RNA cross-links revealed a novel interaction between the ALFR motif, in the Nop domain of Nop5, and the guide/spacer regions of the sRNA. We show that the ALFR motif and the spacer sequence adjacent to box C or C' are important for box C/D sRNP assembly in vitro. These data therefore reveal new RNA-protein contacts in the box C/D sRNP and suggest a role for Nop5 in substrate binding and/or release.  相似文献   

2.

Background

Ro ribonucleoprotein particles (Ro RNPs) consist of a non-coding Y RNA bound by Ro60, La and possibly other proteins. The physiological function of Ro RNPs is controversial as divergent functions have been reported for its different constituents. We have recently shown that Y RNAs are essential for the initiation of mammalian chromosomal DNA replication, whereas Ro RNPs are implicated in RNA stability and RNA quality control. Therefore, we investigate here the functional consequences of RNP formation between Ro60, La and nucleolin proteins with hY RNAs for human chromosomal DNA replication.

Methodology/Principal Findings

We first immunoprecipitated Ro60, La and nucleolin together with associated hY RNAs from HeLa cytosolic cell extract, and analysed the protein and RNA compositions of these precipitated RNPs by Western blotting and quantitative RT-PCR. We found that Y RNAs exist in several RNP complexes. One RNP comprises Ro60, La and hY RNA, and a different RNP comprises nucleolin and hY RNA. In addition about 50% of the Y RNAs in the extract are present outside of these two RNPs. Next, we immunodepleted these RNP complexes from the cytosolic extract and tested the ability of the depleted extracts to reconstitute DNA replication in a human cell-free system. We found that depletion of these RNP complexes from the cytosolic extract does not inhibit DNA replication in vitro. Finally, we tested if an excess of recombinant pure Ro or La protein inhibits Y RNA-dependent DNA replication in this cell-free system. We found that Ro60 and La proteins do not inhibit DNA replication in vitro.

Conclusions/Significance

We conclude that RNPs containing hY RNAs and Ro60, La or nucleolin are not required for the function of hY RNAs in chromosomal DNA replication in a human cell-free system, which can be mediated by Y RNAs outside of these RNPs. These data suggest that Y RNAs can support different cellular functions depending on associated proteins.  相似文献   

3.
Ribonucleoproteins (RNPs) isolated from infectious and defective interfering (DI) influenza virus (WSN) contained three major RNP peaks when analyzed in a glycerol gradient. Peak I RNP was predominant in infectious virus but was greatly reduced in DI virus preparations. Conversely, peak III RNP was elevated in DI virus, suggesting a large increase in DI RNA in this fraction. Labeled [(32)P]RNA was isolated from each RNP region and analyzed by electrophoresis on polyacrylamide gels. Peak I RNP contained primarily the polymerase and some HA genes, peak II contained some HA gene but mostly the NP and NA genes, and peak III contained the M and NS genes. In addition, peak III RNP from DI virus also contained the characteristic DI RNA segments. Interference activity of RNP fractions isolated from infectious and DI virus was tested using infectious center reduction assay. RNP peaks (I, II, and III) from infectious virus did not show any interference activity, whereas the peak III DI RNP caused a reduction in the number of infectious centers as compared to controls. Similar interference was not demonstrable with peak I RNP of DI virus nor with any RNP fractions from infectious virus alone. The interference activity of RNP fractions was RNase sensitive, suggesting that the DI RNA contained in DI RNPs was the interfering agent, and dilution experiments supported the conclusion that a single DI RNP could cause interference. The interfering RNPs were heterogeneous, and the majority migrated slower than viral RNPs containing M and NS genes. These results suggest that DI RNP (or DI RNA) is also responsible for interference in segmented, negative-stranded viruses.  相似文献   

4.
5.
Each of the many different box H/ACA ribonucleoprotein particles (RNPs) present in eukaryotes and archaea consists of four common core proteins and one specific H/ACA small RNA, which bears the sequence elements H (ANANNA) and ACA. Most of the H/ACA RNPs are small nucleolar RNPs (snoRNPs), which are localized in nucleoli, and are one of the two major classes of snoRNPs. Most H/ACA RNPs direct pseudouridine synthesis in pre-rRNA and other RNAs. One H/ACA small nucleolar RNA (snoRNA), vertebrate E1/U17 (snR30 in yeast), is required for pre-rRNA cleavage processing that generates mature 18S rRNA. E1 snoRNA is encoded in introns of protein-coding genes, and the evidence suggests that human E1 RNA undergoes uridine insertional RNA editing. The vertebrate E1 RNA consensus secondary structure shows several features that are absent in other box H/ACA snoRNAs. The available UV-induced RNA-protein crosslinking results suggest that the E1 snoRNP is asymmetrical in vertebrate cells, in contrast to other H/ACA snoRNPs. The vertebrate E1 snoRNP in cells is surprisingly complex: (i) E1 RNA contacts directly and specifically several proteins which do not appear to be any of the H/ACA RNP four core proteins; and (ii) multiple E1 RNA sites are needed for E1 snoRNP formation, E1 RNA stability, and E1 RNA-protein direct interactions.  相似文献   

6.
Ribonucleoprotein (RNP) granules are membraneless compartments within cells, formed by phase separation, that function as regulatory hubs for diverse biological processes. However, the mechanisms by which RNAs and proteins interact to promote RNP granule structure and function in vivo remain unclear. In Xenopus laevis oocytes, maternal mRNAs are localized as large RNPs to the vegetal hemisphere of the developing oocyte, where local translation is critical for proper embryonic patterning. Here we demonstrate that RNPs containing vegetally localized RNAs represent a new class of cytoplasmic RNP granule, termed localization-bodies (L-bodies). We show that L-bodies contain a dynamic protein-containing phase surrounding a nondynamic RNA-containing phase. Our results support a role for RNA as a critical component within these RNP granules and suggest that cis-elements within localized mRNAs may drive subcellular RNA localization through control over phase behavior.  相似文献   

7.
8.
RNA molecules rarely function alone in cells. For most RNAs, their function requires formation of various ribonucleoprotein (RNP) complexes. For example, mRNP composition can determine mRNA localization, translational repression, level of translation or mRNA stability. RNPs are usually studied by biochemical methods. However, biochemical approaches are unsuitable for some model systems, such as mammalian oocytes and early embryos, due to the small amounts that can be obtained for experimental analysis. In such cases, microscopic techniques are often used to learn about RNPs. Here, we present a review of immunostaining, fluorescence in situ hybridization with subcellular resolution and a combination of both, with emphasis on the mouse oocyte and early embryos models. Application of these techniques to whole-mount fixed oocytes and early embryos can provide information about RNP composition and localization with three-dimensional resolution.  相似文献   

9.
Human Ro ribonucleoproteins (RNPs) are autoantigenic particles of unknown function(s) that consist of a 60-kDa protein (Ro60) associated with one hY RNA (hY1-5). Using a modified yeast three-hybrid system, named RNP interaction trap assay (RITA), we cloned a novel Ro RNP-binding protein (RoBPI), based on its property to interact in vivo in yeast with an RNP complex made of recombinant Ro60 (rRo60) protein and hY5 (rhY5) RNA. RoBPI cDNA contains three conserved RNA recognition motifs (RRM) and is present as a family of isoforms differing slightly at their 5' end. The 2.0-kb RoBPI mRNA was detected in all human tissues tested. Highly homologous cDNA sequences were found in banks of expressed sequence tags (ESTs) from mice. Two-hybrid, three-hybrid, and RITA experiments respectively established that 60 kDa RoBPI did not interact in yeast with rRo60 alone, with rhY5 RNA alone, or with bait RNPs consisting of rRo60 and recombinant hY1, hY3, or hY4 RNAs. RoBPI coimmunoprecipitated with Ro RNPs from HeLa cell extracts and partially colocalized with Ro60 in nuclei of cultured cells. Because hY5 RNA and RohY5 RNPs are recent evolutionary additions seen only in primates, but RoBPI seems more conserved, their interaction may represent a gain of function for Ro RNPs. Alternatively, interaction of RohY5 RNPs with RoBPI may have no functional bearing, but may underlie some of the unique biochemical and immunological properties of these RNPs.  相似文献   

10.
Messenger RNA maturation in trypanosomes involves an RNA trans-splicing reaction in which a 39 nucleotide 5'-spliced leader (SL), derived from an independently transcribed 139 nucleotide SL RNA, is joined to pre-mRNAs. Trans-splicing intermediates are structurally consistent with a mechanism of SL addition which is similar to that of cis-splicing of nuclear pre-mRNAs; homologous components (e.g. the U small nuclear RNAs) exist in both cis- and trans-splicing systems, suggesting that these also participate in the two types of splicing reactions. In this study, ribonucleoprotein (RNP) complexes containing the trypanosome SL and U2 RNAs were purified and characterized. Although present at low levels in cellular extracts, the SL and U2 RNPs are the two most abundant of the several non-ribosomal small RNP complexes in these cells. The purification scheme utilizes ion-exchange chromatography, equilibrium density centrifugation, and gel filtration chromatography and reveals that the SL RNP shares biophysical properties with U RNPs of trypanosomes and other eukaryotes; its sedimentation coefficient in sucrose gradients is approximately 10 S, and it is resistant to dissociation during Cs2SO4 equilibrium density centrifugation. Complete separation of the SL and U2 RNPs was achieved by non-denaturing polyacrylamide gel electrophoresis. Proteins purifying with the SL and U2 RNPs were identified by 125I-labeling of tyrosine residues. Four SL RNP proteins with approximate molecular masses of 36, 32, 30, and 27 kDa and one U2 RNP protein of 31 kDa were identified, suggesting that different polypeptides are associated with these two RNAs. These particles are not immunoprecipitated by anti-Sm sera which recognizes U snRNP proteins of other eukaryotes including humans plants and yeast.  相似文献   

11.
12.
Small RNAs in sea urchins were examined in order to characterize developmental changes in their level, subcellular localization, synthesis, and association with proteins and other RNAs. Small RNAs such as the U snRNAs, 5S and 5.8S rRNAs, and 7S RNAs were identified by their mobility on highly cross-linked acrylamide gels. In addition, 7SL and U1 RNAs were identified by northern blot hybridization to cloned human and sea urchin probes, respectively. The level, subcellular localization, and association with proteins or RNA do not change for most small RNAs from fertilization to blastula, even though this is the time when the stored maternal pool of many small RNAs is being supplemented and replaced by embryonically synthesized RNAs. New embryonic synthesis of small RNAs was first detected at the 8-12 hr blastula stage. Although the predicted subsets of the total small RNA pool can be found in the appropriate subcellular compartments, newly synthesized small RNAs have a predominantly cytoplasmic localization: All of the newly synthesized small RNAs were found to be constituents of small RNPs. The RNPs containing newly synthesized small RNAs had sedimentation rates indistinguishable from their maternal counterparts. Thus, on the basis of sedimentation rate, no gross differences could be detected between maternal and embryonic small RNP pools. These small RNPs include a cytoplasmic RNP containing newly synthesized U1 snRNA and the sea urchin signal recognition particle (SRP) containing the 7SL, RNA. We have also identified a small RNP bearing the 5S rRNA which is present in both eggs and embryos. The presence of multiple, abundant, small RNAs and RNPs that are maintained at constant levels in particular subcellular fractions throughout development suggests that small RNAs may be involved in many more cellular activities than have so far been described.  相似文献   

13.
Genome packaging for viruses with segmented genomes is often a complex problem. This is particularly true for influenza viruses and other orthomyxoviruses, whose genome consists of multiple negative-sense RNAs encapsidated as ribonucleoprotein (RNP) complexes. To better understand the structural features of orthomyxovirus RNPs that allow them to be packaged, we determined the crystal structure of the nucleoprotein (NP) of a fish orthomyxovirus, the infectious salmon anemia virus (ISAV) (genus Isavirus). As the major protein component of the RNPs, ISAV-NP possesses a bi-lobular structure similar to the influenza virus NP. Because both RNA-free and RNA-bound ISAV NP forms stable dimers in solution, we were able to measure the NP RNA binding affinity as well as the stoichiometry using recombinant proteins and synthetic oligos. Our RNA binding analysis revealed that each ISAV-NP binds ∼12 nts of RNA, shorter than the 24–28 nts originally estimated for the influenza A virus NP based on population average. The 12-nt stoichiometry was further confirmed by results from electron microscopy and dynamic light scattering. Considering that RNPs of ISAV and the influenza viruses have similar morphologies and dimensions, our findings suggest that NP-free RNA may exist on orthomyxovirus RNPs, and selective RNP packaging may be accomplished through direct RNA-RNA interactions.  相似文献   

14.
Microtubule-microfilament interactions are important for cytokinesis and subcellular localization of proteins and mRNAs. In the early zebrafish embryo, astral microtubule-microfilament interactions also facilitate a stereotypic segregation pattern of germ plasm ribonucleoparticles (GP RNPs), which is critical for their eventual selective inheritance by germ cells. The precise mechanisms and molecular mediators for both cytoskeletal interactions and GP RNPs segregation are the focus of intense research. Here, we report the molecular identification of a zebrafish maternal-effect mutation motley as Birc5b, a homolog of the mammalian Chromosomal Passenger Complex (CPC) component Survivin. The meiosis and mitosis defects in motley/birc5b mutant embryos are consistent with failed CPC function, and additional defects in astral microtubule remodeling contribute to failures in the initiation of cytokinesis furrow ingression. Unexpectedly, the motley/birc5b mutation also disrupts cortical microfilaments and GP RNP aggregation during early cell divisions. Birc5b localizes to the tips of astral microtubules along with polymerizing cortical F-actin and the GP RNPs. Mutant Birc5b co-localizes with cortical F-actin and GP RNPs, but fails to associate with astral microtubule tips, leading to disorganized microfilaments and GP RNP aggregation defects. Thus, maternal Birc5b localizes to astral microtubule tips and associates with cortical F-actin and GP RNPs, potentially linking the two cytoskeletons to mediate microtubule-microfilament reorganization and GP RNP aggregation during early embryonic cell cycles in zebrafish. In addition to the known mitotic function of CPC components, our analyses reveal a non-canonical role for an evolutionarily conserved CPC protein in microfilament reorganization and germ plasm aggregation.  相似文献   

15.
Meier UT 《Chromosoma》2005,114(1):1-14
The H/ACA ribonucleoproteins (RNPs) are known as one of the two major classes of small nucleolar RNPs. They predominantly guide the site-directed pseudouridylation of target RNAs, such as ribosomal and spliceosomal small nuclear RNAs. In addition, they process ribosomal RNA and stabilize vertebrate telomerase RNA. Taken together, the function of H/ACA RNPs is essential for ribosome biogenesis, pre-mRNA splicing, and telomere maintenance. Every cell contains 100–200 different species of H/ACA RNPs, each consisting of the same four core proteins and one function-specifying H/ACA RNA. Most of these RNPs reside in nucleoli and Cajal bodies and mediate the isomerization of specific uridines to pseudouridines. Catalysis of the reaction is mediated by the putative pseudouridylase NAP57 (dyskerin, Cbf5p). Unexpectedly, mutations in this housekeeping enzyme are the major determinants of the inherited bone marrow failure syndrome dyskeratosis congenita. This review details the many diverse functions of H/ACA RNPs, some yet to be uncovered, with an emphasis on the role of the RNP proteins. The multiple functions of H/ACA RNPs appear to be reflected in the complex phenotype of dyskeratosis congenita.  相似文献   

16.
Cells contain a myriad of membraneless ribonucleoprotein (RNP) condensates with distinct compositions of proteins and RNAs. RNP condensates participate in different cellular activities, including RNA storage, mRNA translation or decay, stress response, etc. RNP condensates are assembled via liquid-liquid phase separation (LLPS) driven by multivalent interactions. Transition of RNP condensates into bodies with abnormal material properties, such as solid-like amyloid structures, is associated with the pathogenesis of various diseases. In this review, we focus on how RNAs regulate multiple aspects of RNP condensates, such as dynamic assembly and/or disassembly and biophysical properties. RNA properties – including concentration, sequence, length and structure – also determine the phase behaviors of RNP condensates. RNA is also involved in specifying autophagic degradation of RNP condensates. Unraveling the role of RNA in RNPs provides novel insights into pathological accumulation of RNPs in various diseases. This new understanding can potentially be harnessed to develop therapeutic strategies.  相似文献   

17.
We have used cell-free translation and two-dimensional gel electrophoresis to examine the complexities of the polysomal and cytoplasmic nonpolysomal [ribonucleo-protein (free RNP)] messenger ribonucleic acid (mRNA) populations of sea urchin eggs and embryos. We show that all species of mRNA detected by this method are represented in both the polysomes and free RNPs; essentially all messages present in polysomes are also in the free RNP fraction. However, the cytoplasmic distribution is clearly nonrandom since some templates are relatively concentrated in the free RNPs and others are predominantly in the polysomes. The polypeptides synthesized under the direction of unfertilized egg mRNA are qualitatively indistinguishable from those made by using embryonic mRNA, indicating that the complexity of the abundant class mRNA remains unchanged from egg through early development. However large changes in the abundancies of specific mRNAs occur, and changes are detected in the polysomal/free RNP distribution of some mRNAs through development. The differences in the realtive abundancies of specific mRNAs between polysomes and free RNPs and the developmental changes that take place indicate significant cytoplasmic selection of mRNA for translation. Three different forms of actin (termed alpha, beta, and gamma) were identified among the translation products. Messages for all three are present in the unfertilized egg and early cleavage embryo, yet the gamma form is preferentially located in the polysomes and the alpha and beta in the free RNPs. The relative concentrations of the three change greatly during development as do their relative distributions into polysomes and free RNPs. Examinations of in vivo labeled proteins largely support the in vitro findings. The results indicate that the synthesis of actin mRNAs increases greatly during development and that the expression of the actin mRNAs is partly controlled at the translation level during early development.  相似文献   

18.
Hepatitis delta virus (HDV) RNA forms an unbranched rod structure that is associated with hepatitis delta antigen (HDAg) in cells replicating HDV. Previous in vitro binding experiments using bacterially expressed HDAg showed that the formation of a minimal ribonucleoprotein complex requires an HDV unbranched rod RNA of at least about 300 nucleotides (nt) and suggested that HDAg binds the RNA as a multimer of fixed size. The present study specifically examines the role of HDAg multimerization in the formation of the HDV ribonucleoprotein complex (RNP). Disruption of HDAg multimerization by site-directed mutagenesis was found to profoundly alter the nature of RNP formation. Mutant HDAg proteins defective for multimerization exhibited neither the 300-nt RNA size requirement for binding nor specificity for the unbranched rod structure. The results unambiguously demonstrate that HDAg binds HDV RNA as a multimer and that the HDAg multimer is formed prior to binding the RNA. RNP formation was found to be temperature dependent, which is consistent with conformational changes occurring on binding. Finally, analysis of RNPs constructed with unbranched rod RNAs successively longer than the minimum length indicated that multimeric binding is not limited to the first HDAg bound and that a minimum RNA length of between 604 and 714 nt is required for binding of a second multimer. The results confirm the previous proposal that HDAg binds as a large multimer and demonstrate that the multimer is a critical determinant of the structure of the HDV RNP.Human hepatitis delta virus (HDV) is an unusual subviral agent that increases the severity of acute and chronic liver disease in those infected with its helper, hepatitis B virus (23). The HDV genome is a 1,680-nucleotide (nt) single-stranded circular RNA that is replicated by a double-rolling-circle mechanism (reviewed in references 15 and 28). Both the genome and antigenome RNAs form a characteristic unbranched rod structure due to 70% sequence complementarity between the noncoding and coding regions of the RNA (10, 11, 31). HDV encodes just one protein, hepatitis delta antigen (HDAg), which forms ribonucleoprotein (RNP) complexes with both the genome and the antigenome in cells replicating HDV (3, 5, 30). These complexes play fundamental roles in viral RNA replication and packaging and their characterization is essential for understanding these processes, which are not well characterized.HDAg has been shown to form dimers and higher order multimers, even in the absence of HDV RNA (25, 30, 32). The multimerization activity has been localized to the amino-terminal third of the 195-amino-acid (aa) protein (12, 24, 30, 32). X-ray crystallographic analysis of a peptide comprised of aa 12 to 60 indicated that antiparallel dimers are stabilized by a coiled coil (aa 16 to 48), as well as a hydrophobic core region (aa 50 to 60) that also stabilizes interactions between dimers such that an octameric structure may form (35). Zuccola et al. found that bacterially expressed HDAg could be cross-linked in an octameric structure, and Cornillez-Ty et al. obtained evidence supporting such a structure in cells replicating HDV (7, 35). Site-directed mutations of HDAg amino acids critical for dimerization and/or multimerization abolish the ability of HDAg to support RNA replication (18, 32), indicating that the formation of HDAg multimers is essential for this process.We recently showed that bacterially expressed, C-terminally truncated HDAg forms stable RNP complexes in vitro with segments of HDV RNA that form unbranched rod structures (8). No particular sequences or structures in the RNA, other than the HDV unbranched rod, were essential for complex formation, but, remarkably, binding required that the RNA have a minimum length of at least about 300 nt. Overall, the results were consistent with the formation of a large RNP containing multiple copies of the 19-kDa protein that bound to the RNA either in a highly cooperative manner or as a preformed multimer. On the other hand, based on indirect measures of the RNA-binding activity of site-directed HDAg mutations in cells, others have found that HDAg multimerization might not be required for RNA-binding activity (18).Here, we directly analyze the role of HDAg multimerization in the formation of the HDV RNP complex. We find that HDAg binds to HDV unbranched rod RNA as a preformed multimer. Site-directed mutations that disrupted protein multimerization did not abolish binding but profoundly altered the nature of the RNA-protein complex. In particular, we found that multimerization is associated with RNA-binding specificity, including the RNA length requirement for binding. For the wild-type protein, RNP formation was found to be strongly temperature dependent, suggesting that conformational changes occur on binding, and providing a plausible explanation of the RNA length requirement for binding. Furthermore, we show that the protein binds as multiple multimeric units on longer RNAs, provided the length of the RNA is sufficient. We conclude that the HDAg multimer plays a critical role in the formation of properly structured HDV RNPs.  相似文献   

19.
The process of thyroid hormone synthesis, which occurs in the lumen of the thyroid follicles, results from an oxidative reaction leading, as side effects, to the multimerization of thyroglobulin (TG), the prothyroid hormone. Although hormone synthesis is a continuous process, the amount of Tg multimers is relatively constant. Here, we investigated the role of two molecular chaperones, protein disulfide isomerase (PDI) and immunoglobulin heavy chain-binding protein (BiP), present in the follicular lumen, on the multimerization process due to oxidation using both native Tg and its N-terminal domain (NTD). In vitro, PDI decreased multimerization of Tg and even suppressed the formation of NTD multimers. Under the same conditions, BiP was able to bind to Tg and NTD multimers but did not affect the process of multimerization. Associating BiP with PDI did not enhance the ability of PDI to limit the formation of multimers produced by oxidation. However, when BiP and PDI were reacted together with the multimeric forms and for a longer time (48 h), BiP greatly increased the efficiency of PDI. Accordingly, these two molecular chaperones probably act sequentially on the reduction of the intermolecular disulfide bridges. In the thyroid, a similar process may also be effective and participate in limiting the amount of Tg multimers present in the colloid. These results suggest that extracellular molecular chaperones play a similar role to that occurring in the endoplasmic reticulum and, furthermore, take part in the control of multimerization and aggregation of proteins formed by oxidation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号