首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vacuolar-H+ATPase (V-ATPase) is a complex enzyme with numerous subunits organized in two domains. The membrane domain V0 contains a proteolipid hexameric ring that translocates protons when ATP is hydrolysed by the catalytic cytoplasmic sector (V1). In nerve terminals, V-ATPase generates an electrochemical proton gradient that is acid and positive inside synaptic vesicles. It is used by specific neurotransmitter-proton antiporters to accumulate neurotransmitters inside their storage organelles. During synaptic activity, neurotransmitters are released from synaptic vesicles docked at specialized portions of the presynaptic plasma membrane, the active zones. A fusion pore opens that allows the neurotransmitter to be released from the synaptic vesicle lumen into the synaptic cleft. We briefly review experimental data suggesting that the membrane domain of V-ATPase could be such a fusion pore.We also discuss the functional implications for quantal neurotransmitter release of the sequential use of the same V-ATPase membrane domain in two different events, neurotransmitter accumulation in synaptic vesicles first, and then release from these organelles during synaptic activity.  相似文献   

2.
神经末梢突触囊泡释放神经递质过程的调控蛋白   总被引:3,自引:0,他引:3  
神经末梢突触囊泡释放神经递质是一个复杂且受到精细调控的过程,涉及多种蛋白质间的相互作用。位于突触囊泡膜上的突触囊泡蛋白/突触囊泡相关膜蛋白(synaptobrevin/VAMP),与位于突触前膜上的syntaxin和突触小体相关蛋白SNAP-25,三者聚合形成的可溶性N-甲基马来酰胺敏感因子(NSF)附着蛋白受体(SNARE)核心复合物是突触囊泡胞吐过程中的核心成分。本文主要围绕参与空触囊泡胞吐过程,以及调节SNARE核心复合物的形成,解离及其功能的蛋白质,并对突触囊泡胞吐过程的分子模型作一概述。  相似文献   

3.
Exocytosis is considered as four separate steps: adhesion, fusion/pore formation, pore widening, and content discharge. Experiments on both synthetic and natural membranes are presented to show each of these steps. Major differences are seen in the two fusing systems. These differences are discussed in terms of molecular mechanisms of fusion.  相似文献   

4.
Atomic force microscopy reveal pit-like structures typically containing three or four, approximately 150 nm in diameter depressions at the apical plasma membrane in live pancreatic acinar cells. Stimulation of secretion causes these depressions to dilate and return to their resting size following completion of the process. Exposure of acinar cells to cytochalasin B results in decreased depression size and a loss in stimulable secretion. It is hypothesized that depressions are the fusion pores, where membrane-bound secretory vesicles dock and fuse to release vesicular contents. Zymogen granules, the membrane-bound secretory vesicles in exocrine pancreas, contain the starch digesting enzyme, amylase. Using amylase-specific immunogold labeling, localization of amylase at depressions following stimulation of secretion is demonstrated. This study confirms depressions to be the fusion pores in pancreatic acinar cells. High-resolution images of the fusion pore in live pancreatic acinar cells reveal the structure in much greater detail than has previously been observed.  相似文献   

5.
6.
Chemical communication is underpinned by the fusion of neurotransmitter-containing synaptic vesicles with the plasma membrane at active zones. With the advent of super-resolution microscopy, the door is now opened to unravel the dynamic remodeling of synapses underpinning learning and memory. Imaging proteins with conventional light microscopy cannot provide submicron information vital to determining the nanoscale organization of the synapse. We will first review the current super-resolution microscopy techniques available to investigate the localization and movement of synaptic proteins and how they have been applied to visualize the synapse. We discuss the new techniques and analytical approaches have provided comprehensive insights into synaptic organization in various model systems. Finally, this review provides a brief update on how these super-resolution techniques and analyses have opened the way to a much greater understanding of the synapse, the fusion and compensatory endocytosis machinery.  相似文献   

7.
Synaptotagmins (Syts) constitute a large family of at least 16 members and individual Syt isoforms exhibit distinct Ca2+-binding properties and subcellular localization. It remains to be demonstrated whether multiple Syt isoforms can function independently or cooperatively on certain type of vesicle. In the current study, we have developed NPY-pHluorin to specifically assess exocytosis of large dense core vesicles (LDCVs) and studied the requirement of Syt I and Syt IX for LDCV exocytosis in PC12 cells. We found that down-regulation of both Syt I and Syt IX resulted in a significant loss of Ca2+-dependent LDCV exocytosis. Moreover, our results suggest Syt I and Syt IX play redundant role in controlling the choice of fusion modes. Down-regulation of both Syt I and Syt IX renders more fusion in the kiss-and-run mode. We conclude that Syt I and Syt IX function redundantly in Ca2+-sensing and fusion pore dilation on LDCVs in PC12 cells.  相似文献   

8.
Recent work has identified three distinct classes of viral membrane fusion proteins based on structural criteria. In addition, there are at least four distinct mechanisms by which viral fusion proteins can be triggered to undergo fusion-inducing conformational changes. Viral fusion proteins also contain different types of fusion peptides and vary in their reliance on accessory proteins. These differing features combine to yield a rich diversity of fusion proteins. Yet despite this staggering diversity, all characterized viral fusion proteins convert from a fusion-competent state (dimers or trimers, depending on the class) to a membrane-embedded homotrimeric prehairpin, and then to a trimer-of-hairpins that brings the fusion peptide, attached to the target membrane, and the transmembrane domain, attached to the viral membrane, into close proximity thereby facilitating the union of viral and target membranes. During these conformational conversions, the fusion proteins induce membranes to progress through stages of close apposition, hemifusion, and then the formation of small, and finally large, fusion pores. Clearly, highly divergent proteins have converged on the same overall strategy to mediate fusion, an essential step in the life cycle of every enveloped virus.  相似文献   

9.
We measured capacitance changes in cell attached patches of human neutrophils using a high frequency lock-in method. With this technique the noise level is reduced to 0.025 fF such that capacitance steps of 0.1 fF are clearly detected corresponding to exo- and endocytosis of single 60 nm vesicles. It is thus possible to detect almost all known exocytotic and endocytotic processes including exocytosis of small neurotransmitter containing vesicles in most cell types as well as endocytosis of coated and uncoated pits. In neutrophils we demonstrate a stepwise capacitance decrease generated by 60-165 nm vesicles as expected for endocytosis of coated and non-coated pits. Following ionomycin stimulation a stepwise capacitance increase is observed consisting of 0.1-5 fF steps corresponding to the different granule types of human neutrophils from secretory vesicles to azurophil granules. The opening of individual fusion pores is resolved during exocytosis of 200 nm vesicles. The initial conductance has a mean value of 150 pS and can be as low as 35 pS which is similar to the conductance of many ion channels suggesting that the initial fusion pore is formed by a protein complex.  相似文献   

10.
Glutamate release and synaptic vesicle heterotypic/homotypic fusion were characterized in brain synaptosomes of rats exposed to hypergravity (10 G, 1 h). Stimulated vesicular exocytosis determined as KCl-evoked fluorescence spike of pH-sensitive dye acridine orange (AO) was decreased twice in synaptosomes under hypergravity conditions as compared to control. Sets of measurements demonstrated reduced ability of synaptic vesicles to accumulate AO (10% higher steady-state baseline level of AO fluorescence). Experiments with preloaded l-[14C]glutamate exhibited similar amount of total glutamate accumulated by synaptosomes, equal concentration of ambient glutamate, but the enlarged level of cytoplasmic glutamate measuring as leakage from digitonin-permeabilized synaptosomes in hypergravity. Thus, it may be suggested that +G-induced changes in stimulated vesicular exocytosis were a result of the redistribution of intracellular pool of glutamate, i.e. a decrease in glutamate content of synaptic vesicles and an enrichment of the cytoplasmic glutamate level. To investigate the effect of hypergravity on the last step of exocytosis, i.e. membrane fusion, a cell-free system consisted of synaptic vesicles, plasma membrane vesicles, cytosolic proteins isolated from rat brain synaptosomes was used. It was found that hypergravity reduced the fusion competence of synaptic vesicles and plasma membrane vesicles, whereas synaptosomal cytosolic proteins became more active to promote membrane fusion. The total rate of homo- and heterotypic fusion reaction initiated by Ca2+ or Mg2+/ATP remained unchanged under hypergravity conditions. Thus, hypergravity could induce synaptopathy that was associated with incomplete filling of synaptic vesicles with the neuromediator and changes in exocytotic release.  相似文献   

11.
By mediating the Ca2+ influx that triggers exocytotic fusion, Ca2+ channels play a central role in a wide range of secretory processes. Ca2+ channels consist of a complex of protein subunits, including an 1 subunit that constitutes the voltage-dependent Ca2+-selective membrane pore, and a group of auxiliary subunits, including β, γ, and 2–δ subunits, which modulate channel properties such as inactivation and channel targeting. Subtypes of Ca2+ channels are constituted by different combinations of 1 subunits (of which 10 have been identified) and auxiliary subunits, particularly β (of which 4 have been identified). Activity-secretion coupling is determined not only by the biophysical properties of the channels involved, but also by the relationship between channels and the exocytotic apparatus, which may differ between fast and slow types of secretion. Colocalization of Ca2+ channels at sites of fast release may depend on biochemical interactions between channels and exocytotic proteins. The aim of this article is to review recent work on Ca2+ channel structure and function in exocytotic secretion. We discuss Ca2+ channel involvement in selected types of secretion, including central neurotransmission, endocrine and neuroendocrine secretion, and transmission at graded potential synapses. Several different Ca2+ channel subtypes are involved in these types of secretion, and their function is likely to involve a variety of relationships with the exocytotic apparatus. Elucidating the relationship between Ca2+ channel structure and function is central to our understanding of the fundamental process of exocytotic secretion.  相似文献   

12.
Summary The release of neuronal secretory products by exocytosis in different layers of the median eminence of the rat was investigated ultrastructurally after perfusion with Ringer solution containing tannic acid. Exocytotic images were observed in all layers studied. Neurohaemal release sites were found in the pars externa of the palisade layer, where they occurred not only against the basal lamina of the pericapillary space, but also opposite, adjacent to neuronal and glial elements. In the lateral portion of the pars externa of the palisade layer most release sites were separated from the pericapillary space or the pial surface by ependymal or glial processes. In the pars interna of the palisade layer, and in the reticular, fibre and subependymal layers, release was observed in different types of axonal processes without morphological synaptic specializations. We suggest that products released in the pars externa of the palisade layer are destined to reach the capillaries of the primary portal plexus. Although the non-vascular release sites may serve a similar hormonal function, they may alternatively represent the morphological correlate of axoaxonal contacts or of paracrine, non-synaptic release sites.  相似文献   

13.
During exocytosis the fusion pore opens rapidly, then dilates gradually, and may subsequently close completely, but what controls its dynamics is not well understood. In this study we focus our attention on forces acting on the pore wall, and which are generated solely by the passage of transmitter, ions and water through the open fusion pore. The transport through the charged cylindrical nano-size pore is simulated using a coupled system of Poisson-Nernst-Planck and Navier-Stokes equations and the forces that act radially on the wall of the fusion pore are then estimated. Four forces are considered: a) inertial force, b) pressure, c) viscotic force, and d) electrostatic force. The inertial and viscotic forces are small, but the electrostatic force and the pressure are typically significant. High vesicular pressure tends to open the fusion pore, but the pressure induced by the transport of charged particles (glutamate, ions), which is predominant when the pore wall charge density is high tends to close the pore. The electrostatic force, which also depends on the charge density on the pore wall, is weakly repulsive before the pore dilates, but becomes attractive and pronounced as the pore dilates. Given that the vesicular concentration of free transmitter can change rapidly due to the release, or owing to the dissociation from the gel matrix, we evaluated how much and how rapidly a change of the vesicular K+-glutamate concentration affects the concentration of glutamate and ions in the pore and how such changes alter the radial force on the wall of the fusion pore. A step-like rise of the vesicular K+-glutamate concentration leads to a chain of events. Pore concentration (and efflux) of both K+ and glutamate rise reaching their new steady-state values in less than 100 ns. Interestingly within a similar time interval the pore concentration of Na+ also rises, whereas that of Cl diminishes, although their extra-cellular concentration does not change. Finally such changes affect also the water movement. Water efflux changes bi-phasically, first increasing before decreasing to a new, but lower steady-state value. Nevertheless, even under such conditions an overall approximate neutrality of the pore is maintained remarkably well, and the electrostatic, but also inertial, viscotic and pressure forces acting on the pore wall remain constant. In conclusion the extrusion of the vesicular content generates forces, primarily the force due to the electro-kinetically induced pressure and electrostatic force (both influenced by the pore radius and even more by the charge density on the pore wall), which tend to close the fusion pore.  相似文献   

14.
Neurotransmitters, hormones, or dyes may be released from vesicles via a fusion pore, rather than by full fusion of the vesicle with the plasma membrane. If the lifetime of the fusion pore is comparable to the time required for the substance to exit the vesicle, only a fraction of the total vesicle content may be released during a single pore opening. Assuming 1), fusion pore lifetimes are exponentially distributed (tauP), as expected for simple single channel openings, and 2), vesicle contents are lost through the fusion pore with an exponential time course (tauD), we derive an analytical expression for the probability density function of the fraction of vesicle content released (F): dP/dF=A (1-F)(A-1), where A=tauD/tauP. If A>1, the maximum of the distribution is at F=0; if A<1, the maximum is at F=1; if A=1, the distribution is perfectly flat. Thus, the distribution never has a peak in the middle (0相似文献   

15.
Kelly K Lee 《The EMBO journal》2010,29(7):1299-1311
Enveloped viruses use specialized protein machinery to fuse the viral membrane with that of the host cell during cell invasion. In influenza virus, hundreds of copies of the haemagglutinin (HA) fusion glycoprotein project from the virus surface. Despite intensive study of HA and its fusion activity, the protein's modus operandi in manipulating viral and target membranes to catalyse their fusion is poorly understood. Here, the three‐dimensional architecture of influenza virus–liposome complexes at pH 5.5 was investigated by electron cryo‐tomography. Tomographic reconstructions show that early stages of membrane remodeling take place in a target membrane‐centric manner, progressing from punctate dimples, to the formation of a pinched liposomal funnel that may impinge on the apparently unperturbed viral envelope. The results suggest that the M1 matrix layer serves as an endoskeleton for the virus and a foundation for HA during membrane fusion. Fluorescence spectroscopy monitoring fusion between liposomes and virions shows that leakage of liposome contents takes place more rapidly than lipid mixing at pH 5.5. The relation of ‘leaky’ fusion to the observed prefusion structures is discussed.  相似文献   

16.
Mitochondria from a variety of sources possess an inner membrane channel, the permeability transition pore. The pore is a voltage-dependent channel, activated by matrix Ca2+ and inhibited by matrix H+, which can be blocked by cyclosporin A, presumably after binding to mitochondrial cyclophilin. The physiological function of the permeability transition pore remains unknown. Here we evaluate its potential role as a fast Ca2+ release channel involved in mitochondrial and cellular Ca2+ homeostasis. We (i) discuss the theoretical and experimental reasons why mitochondria need a fast, inducible Ca2+ release channel; (ii) analyze the striking analogies between the mitochondrial permeability transition pore and the sarcoplasmic reticulum ryanodine receptor-Ca2+ release channel; (iii) argue that the permeability transition pore can act as a selective release channel for Ca2+ despite its apparent lack of selectivity for the transported speciesin vitro; and (iv) discuss the importance of mitochondria in cellular Ca2+ homeostasis, and how disruption of this function could impinge upon cell viability, particularly under conditions of oxidative stress.  相似文献   

17.
18.
In many cellular functions the process of membrane fusion is of vital importance. It occurs in a highly specific and strictly controlled fashion. Proteins are likely to play a key role in the induction and modulation of membrane fusion reactions. Aimed at providing insight into the molecular mechanisms of membrane fusion, numerous studies have been carried out on model membrane systems. For example, the divalent-cation induced aggregation and fusion of vesicles consisting of negatively charged phospholipids, such as phosphatidylserine (PS) or cardiolipin (CL), have been characterized in detail. It is important to note that these systems largely lack specificity and control. Therefore conclusions derived from their investigation can not be extrapolated directly to a seemingly comparable counterpart in biology. Yet, the study of model membrane systems does reveal the general requirements of lipid bilayer fusion. The most prominent barrier to molecular contact between two apposing bilayers appears to be due to the hydration of the polar groups of the lipid molecules. Thus, dehydration of the bilayer surface and fluctuations in lipid packing, allowing direct hydrophobic interactions, are critical to the induction of membrane fusion. These membrane alterations are likely to occur only locally, at the site of intermembrane contact. Current views on the way membrane proteins may induce fusion under physiological conditions also emphasize the notion of local surface dehydration and perturbation of lipid packing, possibly through penetration of apolar amino acid segments into the hydrophobic membrane interior.  相似文献   

19.
Carbon dots (C-dots), a recently discovered class of fluorescent nano-sized particles with pure carbon core, have great bioanalytical potential. Neuroactive properties of fluorescent C-dots obtained from β-alanine by microwave heating were assessed based on the analysis of their effects on the key characteristics of GABA- and glutamatergic neurotransmission in isolated rat brain nerve terminals. It was found that C-dots (40–800 μg/ml) in dose-dependent manner: (1) decreased exocytotic release of [3H]GABA and l-[14C]glutamate; (2) reduced acidification of synaptic vesicles; (3) attenuated the initial velocity of Na+-dependent transporter-mediated uptake of [3H]GABA and l-[14C]glutamate; (4) increased the ambient level of the neurotransmitters, nevertheless (5) did not change significantly the potential of the plasma membrane of nerve terminals. Almost complete suppression of exocytotic release of the neurotransmitters was caused by C-dots at a concentration of 800 μg/ml. Fluorescent and neuromodulatory features combined in C-dots create base for their potential usage for labeling and visualization of key processes in nerve terminals, and also in theranostics. In addition, natural presence of carbon-containing nanoparticles in the human food chain and in the air may provoke the development of neurologic consequences.  相似文献   

20.
Summary Young and aged HVJ virions differ structurally and morphologically due to changes that occur during aging in vitro or in ovo. Young virions soon after their budding off are rodshaped, rigid and relatively uniform in size, whereas virions that have aged in vitro after their formation are round, nonrigid and variable in size. These changes during aging seem to be due to the variation of M protein, a skeletal protein that is associated with both the envelope membrane proteins and nucleocapsid strands in the virions. The capacities for virion-to-virion fusion of young and aged virions were compared to clarify the relation between the membrane fusion and membrane-associating skeletal proteins. On treatment with polyethylene glycol (PEG), aged virions readily fused, forming large virion vesicles, but young virions were resistant to fusion. Further, aged virions fused even on incubation at 37°C without the fusogen. Thus the capacity for virion-to-virion fusion evidently increases during aging of virions. This result suggests that skeletal proteins associating with the biological membrane are important for preventing membrane fusion, and that virion-to-virion fusion is a good model system for use in studies on the mechanism of membrane fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号