首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 176 毫秒
1.
Over the past decade, the study of metabolic abnormalities in cancer cells has risen dramatically. Cancer cells can thrive in challenging environments, be it the hypoxic and nutrient-deplete tumor microenvironment or a distant tissue following metastasis. The ways in which cancer cells utilize lipids are often influenced by the complex interactions within the tumor microenvironment and adjacent stroma. Adipocytes can be activated by cancer cells to lipolyze their triglyceride stores, delivering secreted fatty acids to cancer cells for uptake through numerous fatty acid transporters. Cancer-associated fibroblasts are also implicated in lipid secretion for cancer cell catabolism and lipid signaling leading to activation of mitogenic and migratory pathways. As these cancer-stromal interactions are exacerbated during tumor progression, fatty acids secreted into the microenvironment can impact infiltrating immune cell function and phenotype. Lipid metabolic abnormalities such as increased fatty acid oxidation and de novo lipid synthesis can provide survival advantages for the tumor to resist chemotherapeutic and radiation treatments and alleviate cellular stresses involved in the metastatic cascade. In this review, we highlight recent literature that demonstrates how lipids can shape each part of the cancer lifecycle and show that there is significant potential for therapeutic intervention surrounding lipid metabolic and signaling pathways.  相似文献   

2.
One of the paradigms in cancer pathogenesis is the requirement of a cell to undergo transformation from respiration to aerobic glycolysis – the Warburg effect – to become malignant. The demands of a rapidly proliferating cell for carbon metabolites for the synthesis of biomass, energy and redox equivalents, are fundamentally different from the requirements of a differentiated, quiescent cell, but it remains open whether this metabolic switch is a cause or a consequence of malignant transformation. One of the major requirements is the synthesis of lipids for membrane formation to allow for cell proliferation, cell cycle progression and cytokinesis. Enzymes involved in lipid metabolism were indeed found to play a major role in cancer cell proliferation, and most of these enzymes are conserved in the yeast, Saccharomyces cerevisiae. Most notably, cancer cell physiology and metabolic fluxes are very similar to those in the fermenting and rapidly proliferating yeast. Both types of cells display highly active pathways for the synthesis of fatty acids and their incorporation into complex lipids, and imbalances in synthesis or turnover of lipids affect growth and viability of both yeast and cancer cells. Thus, understanding lipid metabolism in S. cerevisiae during cell cycle progression and cell proliferation may complement recent efforts to understand the importance and fundamental regulatory mechanisms of these pathways in cancer.  相似文献   

3.
4.
De novo lipogenesis is considered the primary source of fatty acids for lipid synthesis in cancer cells, even in the presence of exogenous fatty acids. Here, we have used an isotopic fatty acid labeling strategy coupled with metabolomic profiling platforms to comprehensively map palmitic acid incorporation into complex lipids in cancer cells. We show that cancer cells and tumors robustly incorporate and remodel exogenous palmitate into structural and oncogenic glycerophospholipids, sphingolipids, and ether lipids. We also find that fatty acid incorporation into oxidative pathways is reduced in aggressive human cancer cells, and instead shunted into pathways for generating structural and signaling lipids. Our results demonstrate that cancer cells do not solely rely on de novo lipogenesis, but also utilize exogenous fatty acids for generating lipids required for proliferation and protumorigenic lipid signaling. This article is part of a special issue entitled Lipid Metabolism in Cancer.  相似文献   

5.
Serine palmitoyltransferase (SPT) predominantly incorporates serine and fatty acyl-CoAs into diverse sphingolipids (SLs) that serve as structural components of membranes and signaling molecules within or amongst cells. However, SPT also uses alanine as a substrate in the contexts of low serine availability, alanine accumulation, or disease-causing mutations in hereditary sensory neuropathy type I, resulting in the synthesis and accumulation of 1-deoxysphingolipids (deoxySLs). These species promote cytotoxicity in neurons and impact diverse cellular phenotypes, including suppression of anchorage-independent cancer cell growth. While altered serine and alanine levels can promote 1-deoxySL synthesis, they impact numerous other metabolic pathways important for cancer cells. Here, we combined isotope tracing, quantitative metabolomics, and functional studies to better understand the mechanistic drivers of 1-deoxySL toxicity in cancer cells. We determined that both alanine treatment and SPTLC1C133W expression induce 1-deoxy(dihydro)ceramide synthesis and accumulation but fail to broadly impact intermediary metabolism, abundances of other lipids, or growth of adherent cells. However, we found that spheroid culture and soft agar colony formation were compromised when endogenous 1-deoxySL synthesis was induced via SPTLC1C133W expression. Consistent with these impacts on anchorage-independent cell growth, we observed that 1-deoxySL synthesis reduced plasma membrane endocytosis. These results highlight a potential role for SPT promiscuity in linking altered amino acid metabolism to plasma membrane endocytosis.  相似文献   

6.
Recently, EDI3 was identified as a key factor for choline metabolism that controls tumor cell migration and is associated with metastasis in endometrial carcinomas. EDI3 cleaves glycerophosphocholine (GPC) to form choline and glycerol-3-phosphate (G3P). Choline is then further metabolized to phosphatidylcholine (PtdC), the major lipid in membranes and a key player in membrane-mediated cell signaling. The second product, G3P, is a precursor molecule for several lipids with central roles in signaling, for example lysophosphatidic acid (LPA), phosphatidic acid (PA) and diacylglycerol (DAG). LPA activates intracellular signaling pathways by binding to specific LPA receptors, including membrane-bound G protein-coupled receptors and the intracellular nuclear receptor, PPARγ. Conversely, PA and DAG mediate signaling by acting as lipid anchors that bind and activate several signaling proteins. For example, binding of GTPases and PKC to PA and DAG, respectively, increases the activation of signaling networks, mediating processes such as migration, adhesion, proliferation or anti-apoptosis—all relevant for tumor development. We present a concept by which EDI3 either directly generates signaling molecules or provides “membrane anchors” for downstream signaling factors. As a result, EDI3 links choline metabolism to signaling activities resulting in a more malignant phenotype.  相似文献   

7.
Diacylglycerol (DAG) is a versatile molecule that participates as substrate in the synthesis of structural and energetic lipids, and acts as the physiological signal that activates protein kinase C. Diacylglycerol acyltransferase (DGAT), the last committed enzyme in triacylglycerol synthesis, could potentially regulate the content and use of both signaling and glycerolipid substrate DAG by converting it into triacylglycerol. To test this hypothesis, we stably overexpressed the DGAT1 mouse gene in human lung SV40-transformed fibroblasts (DGAT cells), which contains high levels of DAG. DGAT cells exhibited a 3.9-fold higher DGAT activity and a 3.2-fold increase in triacylglycerol content, whereas DAG and phosphatidylcholine decreased by 70 and 20%, respectively, compared with empty vector-transfected SV40 cells (Control cells). Both acylation and de novo synthesis of phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin were reduced by 30-40% in DGAT cells compared with controls, suggesting that DGAT used substrates for triacylglycerol synthesis that had originally been destined to produce phospholipids. The incorporation of [14C]DAG and [14C]fatty acids released from plasma membrane by additions of either phospholipase C or phospholipase A2 into triacylglycerol was increased by 6.2- and 2.8-fold, respectively, in DGAT cells compared with control cells, indicating that DGAT can attenuate signaling lipids. Finally, DGAT overexpression reversed the neoplastic phenotype because it dramatically reduced the cell growth rate and suppressed the anchorage-independent growth of the SV40 cells. These results strongly support the view that DGAT participates in the regulation of membrane lipid synthesis and lipid signaling, thereby playing an important role in modulating cell growth properties.  相似文献   

8.
The role of lipid metabolism has gained particular interest in prostate cancer research. A large body of literature has outlined the unique upregulation of de novo lipid synthesis in prostate cancer. Concordant with this lipogenic phenotype is a metabolic shift, in which cancer cells use alternative enzymes and pathways to facilitate the production of fatty acids. These newly synthesized lipids may support a number of cellular processes to promote cancer cell proliferation and survival. Hence, de novo lipogenesis is under intense investigation as a therapeutic target. Epidemiologic studies suggest dietary fat may also contribute to prostate cancer; however, whether dietary lipids and de novo synthesized lipids are differentially metabolized remains unclear. Here, we highlight the lipogenic nature of prostate cancer, especially the promotion of de novo lipid synthesis, and the significance of various dietary lipids in prostate cancer development and progression.  相似文献   

9.
Gluconobacter oxydans differentiates by forming quantities of intracytoplasmic membranes at the end of exponential growth, and this formation occurs concurrently with a 60% increase in cellular lipid. The present study was initiated to determine whether this newly synthesized lipid differed from that extracted before intracytoplasmic membrane synthesis. Undifferentiated exponential-phase cells were found to contain 30% phosphatidylcholine, 27.1% caridolipin, 25% phosphatidylethanolamine, 12.5% phosphatidylglycerol, 0.4% phosphatidic acid, 0.2% phosphatidylserine, and four additional unidentified lipids totaling less than 5%. The only change detected after formation of intracytoplasmic membranes was a slight decrease in phosphatidylethanolamine and a corresponding increase in phosphatidylcholine. An examination of lipid hydrolysates revealed 11 different fatty acids in the lipids from each cell type. Hexadecanoic acid and monounsaturated octadecenoic accounted for more than 75% of the total fatty acids for both cell types. Proportional changes were noted in all fatty acids except octadecenoate. Anteiso-pentadecanoate comprised less than 1% of the fatty acids from undifferentiated cells but more than 13% of the total fatty acids from cells containing intracytoplasmic membranes. These results suggest that anteiso-pentadecanoate formation closely parallels the formation of intracytoplasmic membranes. Increased concentrations of this fatty acid may contribute to the fluidity necessary for plasma membrane convolution during intracytoplasmic membrane development.  相似文献   

10.
Tumor cells have increased metabolic requirements to maintain rapid growth. In particular, a highly lipogenic phenotype is a hallmark of many tumor types, including prostate. Cancer cells also have increased turnover of nicotinamide adenine dinucleotide (NAD(+)), a coenzyme involved in multiple metabolic pathways. However, a specific role for NAD(+) in tumor cell lipogenesis has yet to be described. Our studies demonstrate a novel role for the NAD(+)-biosynthetic enzyme Nicotinamide phosphoribosyltransferase (Nampt) in maintaining de novo lipogenesis in prostate cancer (PCa) cells. Inhibition of Nampt reduces fatty acid and phospholipid synthesis. In particular, short chain saturated fatty acids and the phosphatidylcholine (PC) lipids into which these fatty acids are incorporated were specifically reduced by Nampt inhibition. Nampt blockade resulted in reduced ATP levels and concomitant activation of AMP-activated protein kinase (AMPK) and phosphorylation of acetyl-CoA carboxylase (ACC). In spite of this, pharmacological inhibition of AMPK was not sufficient to fully restore fatty acid synthesis. Rather, Nampt blockade also induced protein hyperacetylation in PC-3, DU145, and LNCaP cells, which correlated with the observed decreases in lipid synthesis. Moreover, the sirtuin inhibitor Sirtinol, and the simultaneous knockdown of SIRT1 and SIRT3, phenocopied the effects of Nampt inhibition on fatty acid synthesis. Altogether, these data reveal a novel role for Nampt in the regulation of de novo lipogenesis through the modulation of sirtuin activity in PCa cells.  相似文献   

11.
12.
Ether lipids, such as plasmalogens, are peroxisomederived glycerophospholipids in which the hydrocarbon chain at the sn-1 position of the glycerol backbone is attached by an ether bond, as opposed to an ester bond in the more common diacyl phospholipids. This seemingly simple biochemical change has profound structural and functional implications. Notably, the tendency of ether lipids to form non-lamellar inverted hexagonal structures in model membranes suggests that they have a role in facilitating membrane fusion processes. Ether lipids are also important for the organization and stability of lipid raft microdomains, cholesterol-rich membrane regions involved in cellular signaling. In addition to their structural roles, a subset of ether lipids are thought to function as endogenous antioxidants, and emerging studies suggest that they are involved in cell differentiation and signaling pathways. Here, we review the biology of ether lipids and their potential significance in human disorders, including neurological diseases, cancer, and metabolic disorders.  相似文献   

13.
Recently, EDI3 was identified as a key factor for choline metabolism that controls tumor cell migration and is associated with metastasis in endometrial carcinomas. EDI3 cleaves glycerophosphocholine (GPC) to form choline and glycerol-3-phosphate (G3P). Choline is then further metabolized to phosphatidylcholine (PtdC), the major lipid in membranes and a key player in membrane-mediated cell signaling. The second product, G3P, is a precursor molecule for several lipids with central roles in signaling, for example lysophosphatidic acid (LPA), phosphatidic acid (PA) and diacylglycerol (DAG). LPA activates intracellular signaling pathways by binding to specific LPA receptors, including membrane-bound G protein-coupled receptors and the intracellular nuclear receptor, PPARγ. Conversely, PA and DAG mediate signaling by acting as lipid anchors that bind and activate several signaling proteins. For example, binding of GTPases and PKC to PA and DAG, respectively, increases the activation of signaling networks, mediating processes such as migration, adhesion, proliferation or anti-apoptosis—all relevant for tumor development. We present a concept by which EDI3 either directly generates signaling molecules or provides “membrane anchors” for downstream signaling factors. As a result, EDI3 links choline metabolism to signaling activities resulting in a more malignant phenotype.  相似文献   

14.
Sphingolipids are essential components of eukaryotic membranes, where they serve to maintain membrane integrity. They are important components of membrane trafficking and function in signaling as messenger molecules. Sphingolipids are synthesized de novo from very long-chain fatty acids (VLCFA) and sphingoid long-chain bases, which are amide linked to form ceramide and further processed by addition of various headgroups. Little is known concerning the regulation of VLCFA levels and how cells coordinate their synthesis with the availability of long-chain bases for sphingolipid synthesis. Here we show that Elo2, a key enzyme of VLCFA synthesis, is controlled by signaling of the guanine nucleotide exchange factor Rom2, initiating at the plasma membrane. This pathway controls Elo2 phosphorylation state and VLCFA synthesis. Our data identify a regulatory mechanism for coordinating VLCFA synthesis with sphingolipid metabolism and link signal transduction pathways from the plasma membrane to the regulation of lipids for membrane homeostasis.  相似文献   

15.
Skeletal muscle is a plastic organ that is maintained by multiple pathways regulating cell and protein turnover. During muscle atrophy, proteolytic systems are activated, and contractile proteins and organelles are removed, resulting in the shrinkage of muscle fibers. Excessive loss of muscle mass is associated with poor prognosis in several diseases, including myopathies and muscular dystrophies, as well as in systemic disorders such as cancer, diabetes, sepsis and heart failure. Muscle loss also occurs during aging. In this paper, we review the key mechanisms that regulate the turnover of contractile proteins and organelles in muscle tissue, and discuss how impairments in these mechanisms can contribute to muscle atrophy. We also discuss how protein synthesis and degradation are coordinately regulated by signaling pathways that are influenced by mechanical stress, physical activity, and the availability of nutrients and growth factors. Understanding how these pathways regulate muscle mass will provide new therapeutic targets for the prevention and treatment of muscle atrophy in metabolic and neuromuscular diseases.  相似文献   

16.
Plant cell membranes are the sites of sensing and initiation of rapid responses to changing environmental factors including salinity stress. Understanding the mechanisms involved in membrane remodeling is important for studying salt tolerance in plants. This task remains challenging in complex tissue due to suboptimal subcellular membrane isolation techniques. Here, we capitalized on the use of a surface charge-based separation method, free flow electrophoresis, to isolate the tonoplast (TP) and plasma membrane (PM) from leaf tissue of the halophyte ice plant (Mesembryanthemum crystallinum L.). Results demonstrated a membrane-specific lipidomic remodeling in this plant under salt conditions, including an increased proportion of bilayer forming lipid phosphatidylcholine in the TP and an increase in nonbilayer forming and negatively charged lipids (phosphatidylethanolamine and phosphatidylserine) in the PM. Quantitative proteomics showed salt-induced changes in proteins involved in fatty acid synthesis and desaturation, glycerolipid, and sterol synthesis, as well as proteins involved in lipid signaling, binding, and trafficking. These results reveal an essential plant mechanism for membrane homeostasis wherein lipidome remodeling in response to salt stress contributes to maintaining the physiological function of individual subcellular compartments.

Charge-based membrane fractionation techniques and tandem mass spectrometry combined with proteomic and lipidomic approaches reveal membrane-specific lipid remodeling in plants during salt stress.  相似文献   

17.
Membrane composition, particularly of mitochondria, could be a critical factor by determining the propagation of reactions involved in mitochondrial function during periods of high oxidative stress such as rapid growth and aging. Considering that phospholipids not only contribute to the structural and physical properties of biological membranes, but also participate actively in cell signaling and apoptosis, changes affecting either class or fatty acid compositions could affect phospholipid properties and, thus, alter mitochondrial function and cell viability. In the present study, heart and brain mitochondrial membrane phospholipid compositions were analyzed in rainbow trout during the four first years of life, a period characterized by rapid growth and a sustained high metabolic rate. Specifically, farmed fish of three ages (1-, 2- and 4-years) were studied, and phospholipid class compositions of heart and brain mitochondria, and fatty acid compositions of individual phospholipid classes were determined. Rainbow trout heart and brain mitochondria showed different phospholipid compositions (class and fatty acid), likely related to tissue-specific functions. Furthermore, changes in phospholipid class and fatty acid compositions with age were also tissue-dependent. Heart mitochondria had lower proportions of cardiolipin (CL), phosphatidylserine (PS) and phosphatidylinositol, and higher levels of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) with age. Heart mitochondrial membranes became more unsaturated with age, with a significative increase of peroxidation index in CL, PS and sphingomyelin (SM). Therefore, heart mitochondria became more susceptible to oxidative damage with age. In contrast, brain mitochondrial PC and PS content decreased in 4-year-old animals while there was an increase in the proportion of SM. The three main phospholipid classes in brain (PC, PE and PS) showed decreased n-3 polyunsaturated fatty acids, docosahexaenoic acid and peroxidation index, which indicate a different response of brain mitochondrial lipids to rapid growth and maturation.  相似文献   

18.
The determination of final organ size is a highly coordinated and complex process that relies on the precise regulation of cell number and/or cell size. Perturbation of organ size control contributes to many human diseases, including hypertrophy, degenerative diseases, and cancer. Hippo and TOR are among the key signaling pathways involved in the regulation of organ size through their respective functions in the regulation of cell number and cell size. Here, we review the general mechanisms that regulate organ growth, describe how Hippo and TOR control key aspects of growth, and discuss recent findings that highlight a possible coordination between Hippo and TOR in organ size regulation.  相似文献   

19.
20.
Metabolic engineering of new fatty acids in plants   总被引:6,自引:0,他引:6  
Metabolic engineering of plants to express high levels of new fatty acids that are of nutritional and industrial importance has proven to be highly challenging. Significant advances have been made recently, however, particularly in the development of the first plant oils to contain long-chain polyunsaturated fatty acids, such as arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid. Methods of increasing the accumulation of Delta12-modified fatty acids synthesized by transgenically expressed FAD2-like enzymes have also been investigated. Biochemical analyses of plants that express these introduced fatty-acid metabolic pathways have highlighted the central importance of ensuring the removal of novel fatty acids from their site of synthesis on phosphatidylcholine to enable their further modification, exclusion from membrane lipids and accumulation in seed triacylglycerols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号