首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ryanodine is a neutral plant alkaloid which functions as a probe for an intracellular Ca2+ release channel (ryanodine receptor) in excitable tissues. Using [3H]ryanodine, a 30 S protein complex comprised of four polypeptides of Mr 565,000 has been isolated and functionally reconstituted into planar lipid bilayers. The effects of salt concentration and divalent cations on skeletal muscle sarcoplasmic reticulum [3H]ryanodine binding and Ca2+ release channel activity have been compared. These studies suggest that ryanodine is a good probe for investigating the function of the release channel.  相似文献   

2.
Summary Rapid mixing-vesicle ion flux and planar lipid bilayer-single channel measurements have shown that a high-conductance, ligand-gated Ca2+ release channel is present in heavy, junctional-derived membrane fractions of skeletal and cardiac muscle sarcoplasmic reticulum. Using the release channel-specific probe, ryanodine, a 30S protein complex composed of polypeptides of Mr 400 000 has been isolated from cardiac and skeletal muscle. Reconstitution of the complex into planar lipid bilayers has revealed a Ca2+ conductance with properties characteristic of the native Ca2+ release channel.  相似文献   

3.
The association of an endogenous, Ca2+-dependent cysteine-protease with the junctional sarcoplasmic reticulum (SR) is demonstrated. The activity of this protease is strongly stimulated by dithiothreitol (DTT), cysteine and β-mercaptoethanol, and is inhibited by iodoacetamide, mercuric chloride and leupeptin, but not by PMSF. The activity of this thiol-protease is dependent on Ca2+ with half-maximal activity obtained at 0.1 μm and maximal activity at 10 μm. Mg2+ is also an activator of this enzyme (CI50=22 μm). These observations, together with the neutral pH optima and inhibition by the calpain I inhibitor, suggest that this enzyme is of calpain I type. This protease specifically cleaves the ryanodine receptor monomer (510 kD) at one site to produce two fragments with apparent molecular masses of 375 and 150 kD. The proteolytic fragments remain associated as shown by purification of the cleaved ryanodine receptor. The calpain binding site is identified as a PEST (proline, glutamic acid, serine, threonine-rich) region in the amino acid sequence GTPGGTPQPGVE, at positions 1356–1367 of the RyR and the cleavage site, the calmodulin binding site, at residues 1383–1400. The RyR cleavage by the Ca2+-dependent thiol-protease is prevented in the presence of ATP (1–5 mm) and by high NaCl concentrations. This cleavage of the RyR has no effect on ryanodine binding activity but stimulates Ca2+ efflux. A possible involvement of this specific cleavage of the RyR/Ca2+ release channel in the control of calpain activity is discussed.  相似文献   

4.
Ryanodine receptor (RyR) channels from mammalian cardiac and amphibian skeletal muscle were incorporated into planar lipid bilayers. Unitary Ca2+ currents in the SR lumen-to-cytosol direction were recorded at 0 mV in the presence of caffeine (to minimize gating fluctuations). Currents measured with 20 mM lumenal Ca2+ as exclusive charge carrier were 4.00 and 4.07 pA, respectively, and not significantly different. Currents recorded at 1-30 mM lumenal Ca2+ concentrations were attenuated by physiological [K+] (150 mM) and [Mg2+] (1 mM), in the same proportion (approximately 55%) in mammalian and amphibian channels. Two amplitudes, differing by approximately 35%, were found in amphibian channel studies, probably corresponding to alpha and beta RyR isoforms. In physiological [Mg2+], [K+], and lumenal [Ca2+] (1 mM), the Ca2+ current was just less than 0.5 pA. Comparison of this value with the Ca2+ flux underlying Ca2+ sparks suggests that sparks in mammalian cardiac and amphibian skeletal muscles are generated by opening of multiple RyR channels. Further, symmetric high concentrations of Mg2+ substantially reduced the current carried by 10 mM Ca2+ (approximately 40% at 10 mM Mg2+), suggesting that high Mg2+ may make sparks smaller by both inhibiting RyR gating and reducing unitary current.  相似文献   

5.
The effects of various local anesthetics (LAs) on the skeletal muscle ryanodine receptor were tested. The LAs were divided into three categories according to their effects on the binding of ryanodine to the junctional sarcoplasmic reticulum membranes. Ryanodine binding was assayed in the presence of 0.2 m NaCl and 10 m CaCl2. Tetracaine and dibucaine inhibit the binding with half-maximal inhibition (CI50) of 0.12 and 0.25 mm, respectively, while inhibition by benzocaine and procaine occurs with CI50 of about 10-fold higher. Lidocaine, its analogue QX-314, and prilocaine, on the other hand, stimulate the binding up to fourfold with half-maximal stimulation occurring with about 2 mm of the drugs. Lidocaine increases both the receptor affinity for ryanodine by about fivefold and the rate of ryanodine association with its binding site by about 10-fold.Tetracaine interacts with the ryanodine receptor in a non-competitive fashion with respect to ryanodine but it competes with lidocaine for its binding site, suggesting the existence of a single site for the inhibitory and stimulatory LA.  相似文献   

6.
In skeletal and cardiac muscle, contraction is initiated by the rapid release of Ca2+ ions from the intracellular membrane system, sarcoplasmic reticulum. Rapid-mixing vesicle ion flux and planar lipid bilayer-single-channel measurements have shown that Ca2+ release is mediated by a high-conductance, ligand-gated Ca2+ channel. Using the Ca2+ release-specific probe ryanodine, a 30 S protein complex composed of four polypeptides ofM r 400,000 has been isolated. Reconstitution of the purified skeletal and cardiac muscle 30 S complexes into planar lipid bilayers induced single Ca2+ channel currents with conductance and gating kinetics similar to those of native Ca2+ release channels. Electron microscopy revealed structural similarity with the protein bridges (feet) that span the transverse-tubule-sarcoplasmic reticulum junction. These results suggest that striated muscle contains an intracellular Ca2+ release channel that is identical with the ryanodine receptor and the transverse-tubule-sarcoplasmic reticulum spanning feet structures.  相似文献   

7.
The sarcoplasmic reticulum Ca2+ ATPase 1 (SERCA 1) is able to handle the energy derived from ATP hydrolysis in such a way as to determine the parcel of energy that is used for Ca2+ transport and the fraction that is converted into heat. In this work we measured the heat production by SERCA 1 in the two sarcoplasmic reticulum (SR) fractions: the light fraction (LSR), which is enriched in SERCA and the heavy fraction (HSR), which contains both the SERCA and the ryanodine Ca2+ channel. We verified that although HSR cleaved ATP at faster rate than LSR, the amount of heat released during ATP hydrolysis by HSR was smaller than that measured by LSR. Consequently, the amount of heat released per mol of ATP cleaved (ΔHcal) by HSR was lower compared to LSR. In HSR, the addition of 5 mM Mg2+ or ruthenium red, conditions that close the ryanodine Ca2+ channel, promoted a decrease in the ATPase activity, but the amount of heat released during ATP hydrolysis remained practically the same. In this condition, the ΔHcal values of ATP hydrolysis increased significantly. Neither Mg2+ nor ruthenium red had effect on LSR. Thus, we conclude that heat production by SERCA 1 depends on the region of SR in which the enzyme is inserted and that in HSR, the ΔHcal of ATP hydrolysis by SERCA 1 depends on whether the ryanodine Ca2+ channel is opened or closed.  相似文献   

8.
Summary Our interest in the role of sulfhydryl groups (SH) in regulating or altering transport across biological membranes has focused on the significance of a critical SH group associated with the Ca2+-release protein from skeletal muscle sarcoplasmic reticulum (SR). We have shown that binding of heavy metals to this group or oxidation of this sulfhydryl to a disulfide induces rapid Ca2+ release from SR vesicles [1, 2] and induces contraction in skinned muscle fibers [3]. Several models are described in which oxidation and reduction might control the state of the Ca2+-release channel from SR.Abbreviations DTT Dithiothreitol, redox. - oxidation-reduction - SDS Sodium Dodecyl Sulfate - SH Sulfhydryl - SR Sarcoplasmic Reticulum - T-tubule Transverse tubule  相似文献   

9.
In resting muscle, cytoplasmic Ca2+ concentration is maintained at a low level by active Ca2+ transport mediated by the Ca2+ ATPase from sarcoplasmic reticulum. The region of the protein that contains the catalytic site faces the cytoplasmic side of the membrane, while the transmembrane helices form a channel-like structure that allows Ca2+ translocation across the membrane. When the coupling between the catalytic and transport domains is lost, the ATPase mediates Ca2+ efflux as a Ca2+ channel. The Ca2+ efflux through the ATPase channel is activated by different hydrophobic drugs and is arrested by ligands and substrates of the ATPase at physiological pH. At acid pH, the inhibitory effect of cations is no longer observed. It is concluded that the Ca2+ efflux through the ATPase may be sufficiently fast to support physiological Ca2+ oscillations in skeletal muscle, that occur mainly in conditions of intracellular acidosis.  相似文献   

10.
Single channel properties of cardiac and fast-twitch skeletal muscle sarcoplasmic reticulum (SR) release channels were compared in a planar bilayer by fusing SR membranes in a Cs+-conducting medium. We found that the pharmacology, Cs+ conductance and selectivity to monovalent and divalent cations of the two channels were similar. The cardiac SR channel exhibited multiple kinetic states. The open and closed lifetimes were not altered from a range of 10–7 to 10–3 M Ca2+, but the proportion of closed and open states shifted to shorter closings and openings, respectively.However, while the single channel activity of the skeletal SR channel was activated and inactivated by micromolar and millimolar Ca2+, respectively, the cardiac SR channel remained activated in the presence of high [Ca2+]. In correlation to these studies, [3H]ryanodine binding by the receptors of the two channel receptors was inhibited by high [Ca2+] in skeletal but not in cardiac membranes in the presence of adenine nucleotides. There is, however, a minor inhibition of [3H]ryanodine binding of cardiac SR at millimolar Ca2+ in the absence of adenine nucleotides.When Ca2+-induced Ca2+ release was examined from preloaded native SR vesicles, the release rates followed a normal biphasic curve, with Ca2+-induced inactivation at high [Ca2+] for both cardiac and skeletal SR. Our data suggest that the molecular basis of regulation of the SR Ca2+ release channel in cardiac and skeletal muscle is different, and that the cardiac SR channel isoform lacks a Ca2+-inactivated site.This work was supported by research grants from the National Institutes of Health HL13870 and AR38970, and the Texas Affiliate of the American Heart Association, 91A-188. M. Fill was the recipient of an NIH fellowship AR01834.  相似文献   

11.
In this report we describe the application of spectroscopic methods to the study of Ca2+ release by isolated native sarcoplasmic reticulum (SR) membranes from rabbit skeletal muscle. To date, dual-wavelength spectroscopy of arsenazo III and antipyrylazo III difference absorbance have been the most common spectroscopic methods for the assay of SR Ca2+ transport. The utility of these methods is the ability to manipulate intraluminal Ca2+ loading of SR vesicles. These methods have also been useful for studying the effect of both agonists and antagonists upon SR Ca2+ release and Ca2+ uptake. In this study, we have developed the application of Calcium Green-2, a long-wavelength excitable fluorescent indicator, for the study of SR Ca2+ uptake and release. With this method we demonstrate how ryanodine receptor Ca2+ channel opening and closing is regulated in a complex manner by the relative distribution of Ca2+ between extraluminal and intraluminal Ca2+ compartments. Intraluminal Ca2+ is shown to be a key regulator of Ca2+ channel opening. However, these methods also reveal that the intraluminal Ca2+ threshold for Ca2+-induced Ca2+ release varies as a function of extraluminal Ca2+ concentration. The ability to study how the relative distribution of a finite pool of Ca2+ across the SR membrane influences Ca2+ uptake and Ca2+ release may be useful for understanding how the ryanodine receptor is regulated, in vivo.  相似文献   

12.
Summary The relationship between Ca2+ release from sarcoplasmic reticulum, induced by elevated pH, tetraphenylboron (TPB) or chemical modification, and the change in the surface charge of the membranes as measured by the fluorescence intensity of anilinonaphthalene sulfonate (ANS) is examined. The stimulated Ca2+ release is inhibited by dicyclohexylcarbodiimide and external Ca2+. TPB, but not tetraphenylarsonium (TPA+), causes a decrease in ANS fluorescence, with 50% decrease occurring at about 5 m TPB. The decrease in ANS fluorescence as well as the inhibition of Ca2+ accumulation induced by TPB are prevented by TPA+. A linear relationship between the decrease in membrane surface potential and the extent of the Ca2+ released by TPB is obtained. Similar levels of [3H]TPB bound to sarcoplasmic reticulum membranes were obtained regardless of whether or not the vesicles have taken up Ca2+. The inhibition of Ca2+ accumulation and the [3H]TPB incorporation into the membranes were correlated. Ca2+ release from sarcoplasmic reticulum, by pH elevation, chemical modification or by addition of NaSCN (0.2 to 0.5m) or the Ca2+ ionophore ionomycin, is also accompanied by a decrease in ANS fluorescence intensity. However, chemical modification and elevated pH affects the surface potential much less than SCN or TPB do. These results suggest that the enhancement of Ca2+ release by these treatments is not due to a general effect on the membrane surface potential, but rather through the modification of a specific protein. They also suggest that membrane surface charges might play an important role in the control mechanism of Ca2+ release.  相似文献   

13.
Ca2+ transients and the rate of Ca2+ release (dCaREL/dt) from the sarcoplasmic reticulum (SR) in voltage-clamped, fast-twitch skeletal muscle fibers from the rat were studied with the double Vaseline gap technique and using mag-fura-2 and fura-2 as Ca2+ indicators. Single pulse experiments with different returning potentials showed that Ca2+ removal from the myoplasm is voltage independent. Thus, the myoplasmic Ca2+ removal (dCaREM/dt) was studied by fitting the decaying phase of the Ca2+ transient (Melzer, Ríos & Schneider, 1986) and dCaREL/dt was calculated as the difference between dCa/dt and dCaREM/dt. The fast Ca2+ release decayed as a consequence of Ca2+ inactivation of Ca2+ release. Double pulse experiments showed inactivation of the fast Ca2+ release depending on the prepulse duration. At constant interpulse interval, long prepulses (200 msec) induced greater inactivation of the fast Ca2+ release than shorter depolarizations (20 msec). The correlation (r) between the myoplasmic [Ca2+]i and the inhibited amount of Ca2+ release was 0.98. The [Ca2+]i for 50% inactivation of dCaREL/dt was 0.25 m, and the minimum number of sites occupied by Ca2+ to inactivate the Ca2+ release channel was 3.0. These data support Ca2+ binding and inactivation of SR Ca2+ release.This work was supported by Grant-in-Aid from the American Heart Association (National) and Muscular Dystrophy Association (USA). Part of this work was developed in Dr. Stefani's laboratory at Baylor College of Medicine.  相似文献   

14.
DP4 is a 36-residue synthetic peptide that corresponds to the Leu(2442)-Pro(2477) region of RyR1 that contains the reported malignant hyperthermia (MH) mutation site. It has been proposed that DP4 disrupts the normal interdomain interactions that stabilize the closed state of the Ca(2)+ release channel (Yamamoto, T., R. El-Hayek, and N. Ikemoto. 2000. J. Biol. Chem. 275:11618-11625). We have investigated the effects of DP4 on local SR Ca(2)+ release events (Ca(2)+ sparks) in saponin-permeabilized frog skeletal muscle fibers using laser scanning confocal microscopy (line-scan mode, 2 ms/line), as well as the effects of DP4 on frog SR vesicles and frog single RyR Ca(2)+ release channels reconstituted in planar lipid bilayers. DP4 caused a significant increase in Ca(2)+ spark frequency in muscle fibers. However, the mean values of the amplitude, rise time, spatial half width, and temporal half duration of the Ca(2)+ sparks, as well as the distribution of these parameters, remained essentially unchanged in the presence of DP4. Thus, DP4 increased the opening rate, but not the open time of the RyR Ca(2)+ release channel(s) generating the sparks. DP4 also increased [(3)H]ryanodine binding to SR vesicles isolated from frog and mammalian skeletal muscle, and increased the open probability of frog RyR Ca(2)+ release channels reconstituted in bilayers, without changing the amplitude of the current through those channels. However, unlike in Ca(2)+ spark experiments, DP4 produced a pronounced increase in the open time of channels in bilayers. The same peptide with an Arg(17) to Cys(17) replacement (DP4mut), which corresponds to the Arg(2458)-to-Cys(2458) mutation in MH, did not produce a significant effect on RyR activation in muscle fibers, bilayers, or SR vesicles. Mg(2)+ dependence experiments conducted with permeabilized muscle fibers indicate that DP4 preferentially binds to partially Mg(2)+-free RyR(s), thus promoting channel opening and production of Ca(2)+ sparks.  相似文献   

15.
Regulation of cardiac sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase   总被引:2,自引:0,他引:2  
Summary The two high affinity calcium binding sites of the cardiac (Ca2+ + Mg2+)-ATPase have been identified with the use of Eu3+. Eu3+ competes for the two high affinity calcium sites on the enzyme. With the use of laser-pulsed fluorescent spectroscopy, the environment of the two sites appear to be heterogeneous and contain different numbers of H2O molecules coordinated to the ion. The ion appears to be occluded even further in the presence of ATP. Using non-radiative energy transfer studies, we were able to estimate the distance between the two Ca2+ sites to be between 9.4 to 10.2 A in the presence of ATP. Finally, from the assumption that the calcium site must contain four carboxylic side chains to provide the 6–8 ligands needed to coordinate calcium, and based on our recently published data, we predict the peptidic backbone of the two sites.  相似文献   

16.
Summary The purified ryanodine receptor channel of the sheep cardiac muscle sarcoplasmic reticulum (SR) membrane functions as a calcium-activated cation-selective channel under voltage-clamp conditions following reconstitution into planar phospholipid bilayers. We have investigated the effects of the tetra-alkyl ammonium (TAA) cations, (C n H2n+1)4N+ and the trimethyl ammonium cations, ethyltrimethyl ammonium and propyltrimethyl ammonium, on potassium conductance through the receptor channel. Small TAA cations (n = 1–3) and the trimethyl ammonium derivatives act as asymmetric, voltage-dependent blockers of potassium current. Quantitative analysis of the voltage dependence of block indicates that the conduction pathway of the sheep cardiac SR ryanodine receptor channel contains two distinct sites for the interaction of these small organic cations. Sites are located at approximately 50% for tetramethyl ammonium (TMA +) and 90% for tetraethyl ammonium (TEA+) and tetrapropyl ammonium (TPrA+) of the voltage drop across the channel from the cytosolic face of the protein. The chemical substitution of an ethyl or propyl group for one of the methyl groups in TMA+ increases the voltage dependence of block to a level similar to that of TEA + and TPrA+. The zero-voltage dissociation constant (K b(0)) falls with the increasing number of methyl and methylene groups for those blockers acting 90% of the way across the voltage drop. This is interpreted as suggesting a hydrophobic binding site at this point in the conduction pathway. The degree of block increases as the concentration of small TAA cations is raised. The concentration dependence of tetraethyl ammonium block indicates that the cation interacts with a single site within the conduction pathway with a K m of 9.8±1.7 mm (mean±sd) at 40 mV. Larger TAA cations (n = 4–5) do not induce voltage-dependent block of potassium current of the form seen with the smaller TAA cations. These data support the contention that the sheep cardiac SR ryanodine receptor channel may be occupied by at most one ion at a time and suggest that a large proportion of the voltage drop falls over a relatively wide region of the conduction pathway.This work was supported by funds from the Medical Research Council and the British Heart Foundation. We would like to thank Richard Montgomery for his considerable help with the chemical synthesis. We are grateful to Drs. John Chambers, Nick Price and staff for showing us the intricacies of NMR spectroscopy.  相似文献   

17.
Activation of the cardiac ryanodine receptor (RyR2) by Ca(2)+ is an essential step in excitation-contraction coupling in heart muscle. However, little is known about the molecular basis of activation of RyR2 by Ca(2)+. In this study, we investigated the role in Ca(2)+ sensing of the conserved glutamate 3987 located in the predicted transmembrane segment M2 of the mouse RyR2. Single point mutation of this conserved glutamate to alanine (E3987A) reduced markedly the sensitivity of the channel to activation by Ca(2)+, as measured by using single-channel recordings in planar lipid bilayers and by [(3)H]ryanodine binding assay. However, this mutation did not alter the affinity of [(3)H]ryanodine binding and the single-channel conductance. In addition, the E3987A mutant channel was activated by caffeine and ATP, was inhibited by Mg(2)+, and was modified by ryanodine in a fashion similar to that of the wild-type channel. Coexpression of the wild-type and mutant E3987A RyR2 proteins in HEK293 cells produced individual single channels with intermediate sensitivities to activating Ca(2)+. These results are consistent with the view that glutamate 3987 is a major determinant of Ca(2)+ sensitivity to activation of the mouse RyR2 channel, and that Ca(2)+ sensing by RyR2 involves the cooperative action between ryanodine receptor monomers. The results of this study also provide initial insights into the structural and functional properties of the mouse RyR2, which should be useful for studying RyR2 function and regulation in genetically modified mouse models.  相似文献   

18.
Summary Ca2+-induced Ca2+ release at the terminal cisternae of skeletal sarcoplasmic reticulum was demonstrated using heavy sarcoplasmic reticulum vesicles. Ca2+ release was observed at 10 m Ca2+ in the presence of 1.25mm free Mg2+ and was sensitive to low concentrations of ruthenium red and was partially inhibited by valinomycin. These results suggest that the Ca2+-induced Ca2+ release is electrogenic and that an inside negative membrane potential created by the Ca2+ flux opens a second channel that releases Ca2+. Results in support of this formulation were obtained by applying a Cl gradient or K+ gradient to sarcoplasmic reticulum vesicles to initiate Ca2+ release. Based on experiments the following hypothesis for the excitation-contraction coupling of skeletal muscle was formulated. On excitation, small amounts of Ca2+ enter from the transverse tubule and interact with a Ca2+ receptor at the terminal cisternae and cause Ca2+ release (Ca2+-induced Ca2+ release). This Ca2+ flux generates an inside negative membrane potential which opens voltage-gated Ca2+ channels (membrane potential-dependent Ca2+ release) in amounts sufficient for contraction.  相似文献   

19.
The ability of the Ca2+-Mg2+ ATPase pump of skeletal SR to produce and maintain a Ca2+ gradient was studied as a function of the ATP/ADP/Pi ratio. The internal free Ca2+ concentration [Ca2+]i was monitored by changes in fluorescence of CTC. Increasing ADP concentrations in the medium reduce the maximal [Ca2+]i concentration achieved. The inclusion or the omission of 4×10–4 M Pi or doubling the absolute ATP and ADP concentrations at a constant ATP/ADP ratio does not affect the level obtained. The level depends primarily on the ATP/ADP ratio. The [Ca2+] concentration shows a 1.5 power dependence on the ATP/ADP ratio. Further, [Ca2+]i achieved at steady state does not depend on whether the pump had been working in the forward or the reverse direction prior to testing. Analysis shows that the levels of Ca2+ achieved are much lower than the levels predicted thermodynamically under the assumption of ideal coupling between Ca2+ transport and ATP hydrolysis with a stoichiometry of 2:1. Under this condition the osmotic energy of the [Ca2+]i/[Ca2+]o ratio was shown to be 48% as large as the free energy of hydrolysis of ATP, giving an overall thermodynamic efficiency of 48%. Analysis shows that maximal steady-state uptake is determined by the balance between the rates of uptake by the pump and rates of leak processes (intrinsic or extrinsic to the pump). Comparison with other studies shows that the [Ca2+]i achieved results in trans-inhibition of the pump by tying up the Ca2+ translocator in the inwardly oriented phosphorylated form. The absence of an effect of Pi can be taken as evidence that the dissociation of Ca2+ from the inwardly oriented translocator on the phosphoylated enzyme must precede the dephosphorylation of the enzyme.  相似文献   

20.
The skeletal muscle (RyR1) and cardiac muscle (RyR2) ryanodine receptor calcium release channels contain a single, conserved calmodulin (CaM) binding domain, yet are differentially regulated by CaM. Here, we report that high-affinity [(35)S]CaM binding to RyR1 is driven by favorable enthalpic and entropic contributions at Ca(2+) concentrations from <0.01 to 100 microM. At 0.15 microM Ca(2+), [(35)S]CaM bound to RyR2 with decreased affinity and binding enthalpy compared with RyR1. The rates of [(35)S]CaM dissociation from RyR1 increased as the temperature was raised, whereas at 0.15 microM Ca(2+) the rate from RyR2 was little affected. The results suggest major differences in the energetics of CaM binding to and dissociation from RyR1 and RyR2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号