首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nutritional and physical factors affecting the decomposition of [14C]lignocellulose prepared from Douglas fir (Pseudotsuga menziesii) were examined by incubating the labeled substrate with homogenized surface wood scrapings obtained from a Douglas fir log in a Pacific Northwest stream. Incubations were conducted in distilled water, in stream water collected from four different sources, or in a defined mineral salts solution with or without supplemental N (KNO3). Decomposition rates of [14C]lignocellulose, as measured by 14CO2 evolution, were greater in each of the four filter-sterilized sources of stream water than in distilled water alone. Decomposition experiments conducted in stream water media with the addition of defined mineral salts demonstrated that [14C]cellulose decomposition was stimulated 50% by the addition of either KNO3 or KH2PO4/K2HPO4 and further enhanced (167%) by a combination of both. In contrast, [14C]lignin decomposition was stimulated (65%) only by the addition of both N and P. Decomposition of [14C]lignocellulose was greatest when supplemental KNO3 was supplied in concentrations of at least 10.0 mg of N liter−1 but not increased further by higher concentrations. The decomposition of [14C]lignocellulose increased as the incubation temperature was raised and NO3−1-N supplementation further increased these rates between three-and sevenfold over the range of temperatures examined (5 to 22°C). Accumulation of NH4+ (2 to 4 mg of N liter−1) was always observed in culture filtrates of incubations which had been supplemented with KNO3, the quantity being independent of NO3 concentrations ≥ 10 mg of N liter−1. The role of supplemental NO3 in the decomposition of [14C]lignocellulose is discussed in relation to wood decomposition and the low concentrations of N found in stream ecosystems of the Pacific Northwest.  相似文献   

2.
Thermophilic (55°C) anaerobic enrichment cultures were incubated with [14C-lignin]lignocellulose, [14C-polysaccharide]lignocellulose, and kraft [14C]lignin prepared from slash pine, Pinus elliottii, and 14C-labeled preparations of synthetic lignin and purified cellulose. Significant but low percentages (2 to 4%) of synthetic and natural pine lignin were recovered as labeled methane and carbon dioxide during 60-day incubations, whereas much greater percentages (13 to 23%) of kraft lignin were recovered as gaseous end products. Percentages of label recovered from lignin-labeled substrates as dissolved degradation products were approximately equal to percentages recovered as gaseous end products. High-pressure liquid chromatographic analyses of CuO oxidation products of sound and degraded pine lignin indicated that no substantial chemical modifications of the remaining lignin polymer, such as demethoxylation and dearomatization, occurred during biodegradation. The polysaccharide components of pine lignocellulose and purified cellulose were relatively rapidly mineralized to methane and carbon dioxide; 31 to 37% of the pine polysaccharides and 56 to 63% of the purified cellulose were recovered as labeled gaseous end products. An additional 10 to 20% of the polysaccharide substrates was recovered as dissolved degradation products. Overall, these results indicate that elevated temperatures can greatly enhance rates of anaerobic degradation of lignin and lignified substrates to methane and low-molecular-weight aromatic compounds.  相似文献   

3.
Surface wood samples obtained from a Douglas fir log (Pseudotsuga menziesii) in a Pacific Northwest stream were incubated in vitro with [14C]lignocellulose in a defined mineral salts medium supplemented with 10 mg of N liter−1 of 15N-labeled NO3 (50 atom% 15N). Evolution of 14CO2, distribution and isotopic dilution of 15N, filtrate N concentrations, and the rates of denitrification, N2 fixation, and respiration were measured at 6, 12, and 18 days of incubation. The organic N content of the lignocellulose-wood sample mixture had increased from 132 μg of N to a maximum of 231 μg of N per treatment after 6 days of incubation. Rates of [14C]lignocellulose decomposition were greatest during the first 6 days and then began to decline over the remaining 12 days. Total CO2 evolution was also highest at day 6 and declined steadily over the remaining duration of the incubation. Filtrate NH4+-N increased from background levels to a final value of 57 μg of N per treatment. Filtrate NO3 N completely disappeared by day 6, and organic N showed a slight decline between days 12 and 18. The majority of the 15N that could be recovered appeared in the particulate organic fraction by day 6 (41 μg of N), and the filtrate NH4+ N fraction contained 11 μg of 15N by day 18. The 15N enrichment values of the filtrate NH4+ and the inorganic N associated with the particulate fraction had increased to approximately 20 atom% 15N by 18 days of incubation, whereas the particulate organic fraction reached its highest enrichment by day 6. Measurements of N2 fixation and denitrification indicated an insignificant gain or loss of N from the experimental system by these processes. The data show that woody debris in stream ecosystems might function as a rapid and efficient sink for exogenous N, resulting in stimulation of wood decomposition and subsequent activation of other N cycling processes.  相似文献   

4.
Microbial degradation of [beta-14C]polystyrene and 1,3-diphenylbutane, a compound structurally representing the smallest repeating unit of styrene (dimer), was investigated in soil and liquid enrichment cultures. Degradation rates in soil, as determined by 14CO2 evolution from applied [14C]polystyrene, varied from 1.5 to 3.0% for a 4-month period. Although relatively low, these percentages were 15 to 30 times greater than values previously reported. Enrichment cultures, containing 1,3-diphenylbutane as the only carbon souce, were used to determine the mechanisms of microbial oxidation of the polymer chain ends. Metabolism of 1,3-diphenylbutane appeared to involve the attack by a monooxygenease to form 2-phenyl-4-hydroxyphenylbutane followed by a further oxidation and subsequent fission of the benzene ring to yield 4-phenylvaleric acid and an unidentified 5-carbon fragment via the classic meta-fission pathway. Phenylacetic acid was probably formed from 4-phenylvaleric acid by subsequent beta-oxidation of the side chain, methyl-oxidation and decarboxylation. An initial examination of the population of microorganisms in the diphenylbutane enrichment cultures indicated that these oxidative reactions are carried out by common soil microorganism of the genera Bacillus, Pseudomonas, Micrococcus, and Nocardia.  相似文献   

5.
6.
[14C-lignin]lignocellulose was solubilized by alkaline heat treatment and separated into different molecular size fractions for use as the sole source of carbon in anaerobic enrichment cultures. This study is aimed at determining the fate of low-molecular-weight, polyaromatic lignin derivatives during anaerobic degradation. Gel permeation chromatography was used to preparatively separate the original 14C-lignin substrate into three component molecular size fractions, each of which was then fed to separate enrichment cultures. Biodegradability was assessed by monitoring total carbon dioxide and methane production, evolution of labeled gases, loss of 14C-activity from solution, and changes in gel permeation chromatographic elution patterns. Results indicated that the smaller the size of the molecular weight fraction, the more extensive the degradation to gaseous end products. In addition, up to 30% of the entire soluble lignin-derived carbon was anaerobically mineralized to carbon dioxide and methane.  相似文献   

7.
1. A study has been made of the incorporation of carbon from [14C]formaldehyde and [14C]formate by cultures of Pseudomonas methanica growing on methane. 2. The distribution of radioactivity within the non-volatile constituents of the ethanol-soluble fractions of the cells, after incubation with labelled compounds for periods of up to 1min., has been analysed by chromatography and radioautography. 3. Radioactivity was fixed from [14C]formaldehyde mainly into the phosphates of the sugars, glucose, fructose, sedoheptulose and allulose. 4. Very little radioactivity was fixed from [14C]formate; after 1min. the only products identified were serine and malate. 5. The distribution of radioactivity within the carbon skeleton of glucose, obtained from short-term incubations with [14C]methanol of Pseudomonas methanica growing on methane, has been investigated. At the earliest time of sampling over 70% of the radioactivity was located in C-1; as the time increased the radioactivity spread throughout the molecule. 6. The results have been interpreted in terms of a variant of the pentose phosphate cycle, involving the condensation of formaldehyde with C-1 of ribose 5-phosphate to give allulose phosphate.  相似文献   

8.
It is shown that more than 90% of the labelled substance D-[1-14C] calcium homopantotenate is rapidly removed from the organism with urea; 6-8% are products of its transformation, among them GABA is identified. An insignificant transformation of D-[1-14C] calcium homopantotenate up to 14CO2 is observed. After the preparation administration only unchanged D-[1-14C] calcium homopantotenate was found in the tissues, except of the liver where, as in urea, there is a nonidentified product with small Rf. [1-14C] GABA is rapidly transformed to 14CO2 and only its insignificant part is removed with urea, chiefly as products of transformation.  相似文献   

9.
[14C]GABA is taken up by rat brain synaptosomes via a high affinity, Na+-dependent process. Subsequent addition of depolarizing levels of potassium (56.2 MM) or veratridine (100 μM) stimulates the release of synaptosomal [14C]GABA by a process which is sensitive to the external concentration of divalent cations such as Ca2+, Mg2+, and Mn2+. However, the relatively smaller amount of [14C]GABA taken up by synaptosomes in the absence of Na+ is not released from synaptosomes by Ca2+ -dependent, K +-stimulation. [14C]DABA, a competitive inhibitor of synaptosomal uptake of GABA (Iversen & Johnson , 1971) is also taken up by synaptosomal fractions via a Na + -dependent process; and is subsequently released by Ca2+ -dependent, K+-stimulation. On the other hand, [14C]β-alanine, a purported blocker of glial uptake systems for GABA (Schon & Kelly , 1974) is a poor competitor of GABA uptake into synaptosomes. Comparatively small amounts of [14C] β-alanine are taken up by synaptosomes and no significant amount is released by Ca2+ -dependent, K+-stimulation. These data suggest that entry of [14C]GABA into a releasable pool requires external Na+ ions and maximal evoked release of [14C]GABA from the synaptosomal pool requires external Ca2+ ions. The GABA analogue, DABA, is apparently successful in entering the same or similar synaptosomal pool. The GABA analogue, β-alanine, is not. None of the compounds or conditions studied were found to simultaneously affect both uptake and release processes. Compounds which stimulated release (veratridine) or inhibited release (magnesium) were found to have minimal effect on synaptosomal uptake. Likewise compounds (DABA) or conditions (Na+-free medium) which inhibited uptake, had little effect on release.  相似文献   

10.
Cultures of Fusarium roseium 'Gibbosum' on rice were treated with [14C]zearalenone, alpha[14C]zearalenol, or beta-[14C]zearalenol to determine whether a precursor-product relationship exists among these closely related fungal metabolites. Culture extracts were purified by silica gel column chromatography and fractionated by high-pressure liquid chromatography, and the level of radioactivity was determined. Within 7 days, the beta-[14C]zearalenol was converted to zearalenone, and no residual beta-[14C]zearalenol was detectable. Most of the alpha-[14C]zearalenol added was also converted into zearalenone with 14 days. In cultures treated with [14C]zearalenone, no radioactivity was noted in any other components.  相似文献   

11.
12.
Cultures of Fusarium roseium 'Gibbosum' on rice were treated with [14C]zearalenone, alpha[14C]zearalenol, or beta-[14C]zearalenol to determine whether a precursor-product relationship exists among these closely related fungal metabolites. Culture extracts were purified by silica gel column chromatography and fractionated by high-pressure liquid chromatography, and the level of radioactivity was determined. Within 7 days, the beta-[14C]zearalenol was converted to zearalenone, and no residual beta-[14C]zearalenol was detectable. Most of the alpha-[14C]zearalenol added was also converted into zearalenone with 14 days. In cultures treated with [14C]zearalenone, no radioactivity was noted in any other components.  相似文献   

13.
Two different mechanisms were responsible for the disappearance of styrene in enrichment cultures: (i) a mixed population of microorganisms, capable of utilizing styrene as a sole carbon source, oxidized this substrate to phenylethanol and phenylacetic acid; (ii) the culture also mediated polymerization of the monomer to low-molecular-weight styrene oligomers. This chemical reaction probably occurred as the result of microbial degradation of butylcatechol, an antioxidant polymerization inhibitor present in commercial styrene. The resultant polymer material was subsequently metabolized. In soil incubation studies, 14CO2 evolution from applied [8-14C] styrene was used to estimate microbial degradation. Approximately 90 percent of the labeled carbon was evolved from a 0.2 percent addition, and about 75 percent was lost from the 0.5 percent application over a 16-week period.  相似文献   

14.
Two different mechanisms were responsible for the disappearance of styrene in enrichment cultures: (i) a mixed population of microorganisms, capable of utilizing styrene as a sole carbon source, oxidized this substrate to phenylethanol and phenylacetic acid; (ii) the culture also mediated polymerization of the monomer to low-molecular-weight styrene oligomers. This chemical reaction probably occurred as the result of microbial degradation of butylcatechol, an antioxidant polymerization inhibitor present in commercial styrene. The resultant polymer material was subsequently metabolized. In soil incubation studies, 14CO2 evolution from applied [8-14C] styrene was used to estimate microbial degradation. Approximately 90 percent of the labeled carbon was evolved from a 0.2 percent addition, and about 75 percent was lost from the 0.5 percent application over a 16-week period.  相似文献   

15.
16.
17.
18.
19.
Autoradiographs of mature cotton bolls which earlier had radioglucoseintroduced via a thin incision into their peduncles show a markedasymmetry in distribution of the label. Radio-assay shows thespecific activity of the cotton fibres on the treated side tobe as much as 30-fold that on the opposite side.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号