首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Exposure of biological chromophores to ultraviolet radiation can lead to photochemical damage. However, the role of visible light, particularly in the blue region of the spectrum, has been largely ignored. To test the hypothesis that blue light is toxic to non-pigmented epithelial cells, confluent cultures of human primary retinal epithelial cells were exposed to visible light (390-550 nm at 2.8 milliwatts/cm2) for up to 6 h. A small loss of mitochondrial respiratory activity was observed at 6 h compared with dark-maintained cells, and this loss became greater with increasing time. To investigate the mechanism of cell loss, the damage to mitochondrial and nuclear genes was assessed using the quantitative PCR. Light exposure significantly damaged mitochondrial DNA at 3 h (0.7 lesion/10 kb DNA) compared with dark-maintained controls. However, by 6 h of light exposure, the number of lesions was decreased in the surviving cells, indicating DNA repair. Isolated mitochondria exposed to light generated singlet oxygen, superoxide anion, and the hydroxyl radical. Antioxidants confirmed the superoxide anion to be the primary species responsible for the mitochondrial DNA lesions. The effect of lipofuscin, a photoinducible intracellular generator of reactive oxygen intermediates, was investigated for comparison. Exposure of lipofuscin-containing cells to visible light caused an increase in both mitochondrial and nuclear DNA lesions compared with non-pigmented cells. We conclude that visible light can cause cell dysfunction through the action of reactive oxygen species on DNA and that this may contribute to cellular aging, age-related pathologies, and tumorigenesis.  相似文献   

2.
In this study, we describe the effect of red and blue light on the timing of commitment to cell division in Chlamydomonas reinhardtii. The time point and cell size after which cells can complete their cell cycle with one division round were determined for cultures that were exposed to various red and blue light periods. We show that the commitment point of cells grown in blue light is shifted to a later time point and a larger cell size, when compared with cells grown in red light. This shift was reduced when cultures were exposed to shorter blue light periods. Furthermore, this shift occurred only when exposure to blue light started before the cells attained a particular size. We conclude that the critical cell size for cell division, which is the cell size at which commitment to cell division is attained, is dependent on spectral composition.  相似文献   

3.
The ability of some animals to sense magnetic fields has long captured the human imagination. In our recent paper, we explored how radical pair effects in the protein cryptochrome may underlie the magnetic orientation sense of migratory birds. Here we explain our model and discuss its relationship to experimental results on plant cryptochromes, as well as discuss the next steps in refining our model, and explore alternate but related possibilities for modeling and understanding cryptochrome as a magnetic sensor.Key words: cryptochrome, radical pair machanism, avian orientation, magnetic field effect, Arabidopsis thaliana, avian magnetoreception, magnetic sensorThe ability of some animals to sense magnetic fields is a long-standing open problem in biology. Over the past 50 years, scientific studies have shown that a wide variety of living organisms have the ability to perceive magnetic fields and can use information from the earth''s magnetic field in orientation behavior. The best-studied example of animal magnetoreception is the case of migratory birds, who use the earth''s magnetic field, as well as a variety of other environmental cues, to find their way during migration.The two prevailing hypotheses for the mechanism of avian magnetoreception are an iron-mineral-based explanation, wherein birds use small deposits of magnetic iron minerals1,2,12 in the base of their beaks for magnetic orientation, and a radical-pair-based explanation, in which a magnetically sensitive chemical reaction in the eye of the bird enables perception of the magnetic field via its effects on reaction products. The latter hypothesis is based on the idea that a radical pair reaction may take place in the protein cryptochrome in the retina of the bird.3,4 Cryptochrome contains a blue-light-absorbing chromophore, flavin adenine dinucleotide (FAD); this FAD cofactor is reduced via a series of light-induced electron transfers from a chain of three tryptophans that bridge the space between FAD and the protein surface (see Fig. 1). The hypothesis explored in our paper4 is that a radical pair reaction takes place between FAD and the tryptophans in the photoreduction pathway which modulates the signaling activity of cryptochrome. The specifics of this idea are outlined in Figure 1.Open in a separate windowFigure 1Right: Cryptochrome internally binds the FAD cofactor and contains a three-tryptophan photoreduction pathway conserved from photolyase, consisting of Trp400, Trp377, and Trp324, with Trp400 nearest the FAD and Trp324 closest to the protein surface. After the FAD cofactor absorbs a photon, bringing it into an excited state, it is protonated from a nearby acidic residue, and then electron transfer proceeds from Trp400. At this stage, the semireduced FADH and Trp400+ comprise a radical pair—that is, each partner has an unpaired electron, and the spins of those electrons are in a correlated state. Cryptochrome is thought to be in its active, signaling state when the FAD cofactor is in this semireduced FADH form. An electron is then transferred from Trp377 to Trp400 and from Trp324 to Trp377, forming radical pairs FADH + Trp377+ and FADH + Trp324+ in the process. The Trp324 radical is then deprotonated. Before this final deprotonation, it is possible for the electron to back transfer from the tryptophan to FADH. If this occurs, FADH reverts to the oxidized FAD form, and cryptochrome is no longer in its active state. Left: This schematic of the electron transfer pathway in cryptochrome shows the estimated lifetimes of each of the radical pair states. The system spends most of its time in the FADH + Trp324 radical pair state. Also shown are the electron and nuclear spins on the FADH and Trp324 radicals. Each nuclear spin adds a small contribution to the local magnetic field. The unpaired electron spins are shown here in the singlet (antiparallel) state. They precess around the local magnetic field, which consists of contributions from the external field and from each of the nuclear spins, causing interconversion to the triplet (parallel) state and back again. This singlet-triplet interconversion is the basis of the radical pair effect in the following sense. Electron back-transfer from Trp324 to FADH proceeds only when the unpaired electrons on each radical are in the singlet state. Cryptochrome remains in its active state so long as this back-transfer is impeded. Therefore, singlet-triplet interconversion influences the time cryptochrome can spend in its active state, and so this magnetic-field-driven effect can alter the protein''s signaling behavior.That magnetic field effects do occur in cryptochrome is supported indirectly by experiments done by Margaret Ahmad and co-workers, as reported in their recent paper5 on the effects of magnetic fields on cryptochrome-dependent responses in Arabidopsis thaliana seedlings. In our paper, Magnetic Field Effects in Arabidopsis thaliana Cryptochrome-1 (4), we sought to evaluate this possibility computationally, to see whether a magnetic field effect in the FADH - tryptophan radical pair is reasonable. We found that it is possible to see a change in cryptochrome activation yield (the amount of time cryptochrome stays in its active state) of about 10%.Unfortunately, the magnetic field dependence of cryptochrome activation seen in our calculations cannot be taken as exact because of several limitations. Chief among these are that the models of the radical pair did not include all nuclei, and the hyperfine coupling constants were taken from DNA photolyase, which is a protein highly similar to cryptochrome in structure, but which does not necessarily have precisely the same hyperfine coupling for the FAD cofactor and the tryptophans in the photoreduction pathway as does cryptochrome. However, the suggested theory is general and with the knowledge of correct hyperfine coupling constants for the radical pair partners it can be used to calculate the activation yield precisely. Although it would be ideal to obtain hyperfine parameters from experiment, it is also possible to calculate the hyperfine coupling constants with advanced ab initio techniques using the Gaussian package.6 Our preliminary calculations of the hyperfine couplings in tryptophan radicals compare well with the values used in our paper.4 This sort of calculation creates the opportunity not only to refine our current picture of the radical pair mechanism in cryptochrome, but also to explore other possible radical pairs in the system.In light of work being done by Margaret Ahmad and co-workers (not yet published), it has been suggested recently that the radical pair reaction in cryptochrome may not occur between the FAD cofactor and tryptophan, but in some other radical pair within the protein. It is possible that rather than occurring in the FAD photoreduction process, the radical pair reaction actually takes place in the reoxidation reaction wherein the semireduced FADH is brought back to the oxidized FAD form. One possible radical pair in the back reaction is between FAD and an oxygen molecule which is thought to be involved in the reoxidization process. This radical pair is of particular interest because an oxygen radical would be devoid of hyperfine interactions. Such a radical pair, where one radical has no hyperfine coupling, would be consistent with studies on the effects of weak radio-frequency oscillating magnetic fields on migratory bird orientation. Thorsten Ritz and co-workers found that appropriate orientation behavior depended not only on the strength and angle of the oscillating field, but also that the minimum field strength necessary to disrupt orientation depended on the frequency of the oscillating field in a resonance-like behavior that would be predicted by just such a radical pair79 (personal communication with T. Ritz).The scientific community is still a long way from a complete understanding of avian magnetoreception. The best that may be said of our understanding of it is that birds do demonstrably perceive and use magnetic field information, and that their responses to magnetic fields under different conditions—light intensity and color, magnetic field strength and presence and frequency of oscillating fields—belies a complex phenomenon which is probably the result of multiple receptors which interact in unknown ways.10,11 However, disorientation responses to low-intensity oscillating magnetic fields are strongly suggestive of the involvement of a radical-pair mechanism, making the exploration of radical pair effects in cryptochrome a useful endeavor. Much remains to be done. Even if cryptochrome is confirmed as magnetoreceptor, it remains for biologists to determine how its signaling modulation enters into a bird''s sensory perception and ultimately its orientation behavior. Nevertheless, radical pair effects in cryptochrome seem promising as a possible source of magnetoreception in birds, and continued investigation may yet shed light on this complex behavior.  相似文献   

4.
Shalitin D  Yu X  Maymon M  Mockler T  Lin C 《The Plant cell》2003,15(10):2421-2429
Cryptochromes are photolyase-like blue/UV-A light receptors that regulate various light responses in animals and plants. Arabidopsis cryptochrome 1 (cry1) is the major photoreceptor mediating blue light inhibition of hypocotyl elongation. The initial photochemistry underlying cryptochrome function and regulation remain poorly understood. We report here a study of the blue light-dependent phosphorylation of Arabidopsis cry1. Cry1 is detected primarily as unphosphorylated protein in etiolated seedlings, but it is phosphorylated in plants exposed to blue light. Cry1 phosphorylation increases in response to increased fluence of blue light, whereas the phosphorylated cry1 disappears rapidly when plants are transferred from light to dark. Light-dependent cry1 phosphorylation appears specific to blue light, because little cry1 phosphorylation is detected in seedlings treated with red light or far-red light, and it is largely independent from phytochrome actions, because no phytochrome mutants tested significantly affect cry1 phosphorylation. The Arabidopsis cry1 protein expressed and purified from insect cells is phosphorylated in vitro in a blue light-dependent manner, consistent with cry1 undergoing autophosphorylation. To determine whether cry1 phosphorylation is associated with its function or regulation, we isolated and characterized missense cry1 mutants that express full-length CRY1 apoprotein. Mutant residues are found throughout the CRY1 coding sequence, but none of these inactive cry1 mutant proteins shows blue light-induced phosphorylation. These results demonstrate that blue light-dependent cry1 phosphorylation is closely associated with the function or regulation of the photoreceptor and that the overall structure of cry1 is critical to its phosphorylation.  相似文献   

5.
In this paper we compared the pigment composition, photochemical activity, chloroplast ultrastructure, thylakoid membrane polypeptide composition and ribosomal content of wild-type and seven light-sensitive mutants of Chlamydomonas reinhardii.All the mutants had low chlorophyll and carotenoid content compared to wild-type. Mutants lts-30 and lts-135 were also characterized by a complete absence of visible carotenoids, while mutant lts-19 was fully deficient in chlorophylls.In most mutants, the chloroplast fragment could not carry out any DCIP photoreduction and O2 evolution was also blocked. The PSI/P700/activity was decreased in most cases.The mutant strains contained mostly single lamellae in their plastids, that is the stacking capacity of the thylakoid membranes was very decreased or fully absent. In most cases the number of lamellae was also very low.The relative amounts of 70 S ribosomes were decreased in all of the mutants. The thylakoid membranes showed anomalies in the region of 24 000–30 000 dalton polypeptides. The common characteristic for them was the relatively higher amount of the 30 000 dalton polypeptide and considerably decreased level of the 27 000 and 24 000 dalton polypeptides relative to the wild-type. These polypeptides were probably constituents of the chlorophyll-protein complex II which has been suggested to be the light harvesting pigment complex for PSII. The polypeptide of 30 000 daltons is the precursor for the LHCP apoprotein (24 000 dalton protein). It may be that the lighstimulated conversion of this precursor into LHCP apoprotein was blocked in our pigment-deficient mutants.Abbreviations CPI Chlorophyll-protein complex I - PSI Photosystem I - PSII Photosystem II - LHCP Light-harvesting pigment complex - DCIP 2,6-dichlorophenolindophenol - RuDPC-ase Ribulose-1,5-biphosphate-carboxylase - SDS Sodium dodecyl sulfate - LIDS Lithium dodecyl sulfate - PAG Polyacrylamide gel - TKM buffer 25 mM Tris-HCl, pH 7.S; 25 mM KCl; 25 mM Mg acetate  相似文献   

6.
Numerous reports have established that lipid peroxidation contributes to cell injury by altering the basic physical properties and structural organization of membrane components. Oxidative modification of polyunsaturated phospholipids has been shown, in particular, to alter the intermolecular packing, thermodynamic, and phase parameters of the membrane bilayer. In this study, the effects of oxidative stress on membrane phospholipid and sterol organization were measured using small angle x-ray diffraction approaches. Model membranes enriched in dilinoleoylphosphatidylcholine were prepared at various concentrations of cholesterol and subjected to lipid peroxidation at physiologic conditions. At cholesterol-to-phospholipid mole ratios (C/P) as low as 0.4, lipid peroxidation induced the formation of discrete, membrane-restricted cholesterol domains having a unit cell periodicity or d-space value of 34 A. The formation of cholesterol domains correlated directly with lipid hydroperoxide levels and was inhibited by treatment with vitamin E. In the absence of oxidative stress, similar cholesterol domains were observed only at C/P ratios of 1.0 or higher. In addition to changes in sterol organization, lipid peroxidation also caused reproducible changes in overall membrane structure, including a 10 A reduction in the width of the surrounding, sterol-poor membrane bilayer. These data provided direct evidence that lipid peroxidation alters the essential organization and structure of membrane lipids in a manner that may contribute to changes in membrane function during aging and oxidative stress-related disorders.  相似文献   

7.
The present study was performed to examine the induction of apoptotic cell death and autophagy by blue LED irradiation, and the contribution of autophagy to apoptosis in B cell lymphoma A20 and RAMOS cells exposed to blue LED. Irradiation with blue LED reduced cell viability and induced apoptotic cell death, as indicated by exposure of phosphatidylserine on the plasma outside membrane and fragmentation of DNA. Furthermore, the mitochondrial membrane potential increased, and apoptotic proteins (PARP, caspase 3, Bax, and bcl-2) were observed. In addition, the level of intracellular superoxide anion (O2) gradually increased. Interestingly the formation of autophagosomes and level of LC3-II were increased in blue LED-irradiated A20 and RAMOS cells, but inhibited after pretreatment with 3-methyladenine (3-MA), widely used as an autophagy inhibitor. Inhibition of the autophagic process by pretreatment with 3-MA blocked blue LED irradiation-induced caspase-3 activation. Moreover, a significant reduction of both the early and late phases of apoptosis after transfection with ATG5 and beclin 1 siRNAs was shown by the annexin V/PI staining, indicating a crucial role of autophagy in blue LED-induced apoptosis in cells. Additionally, the survival rate of mice irradiated with blue LED after injection with A20 cells increased compared to the control group. Our data demonstrate that blue LED irradiation induces apoptosis via the mitochondrial-mediated pathway, in conjunction with autophagy. Further studies are needed to elucidate the precise mechanism of blue LED-induced immune cell death.  相似文献   

8.
9.
The cryptochrome blue light photoreceptor family of Arabidopsis thaliana consists of two members, CRY1 and CRY2 (PHH1). CRY2 contains a putative nuclear localization signal (NLS) within its C-terminal region. We examined whether CRY2 is localized in the nucleus and whether the C-terminal region of CRY2 is involved in nuclear targeting. Total cellular and nuclear protein extracts from Arabidopsis were subjected to immunoblot analysis with CRY2-specific antibodies. Strong CRY2 signals were obtained in the nuclear fraction. Fusion proteins consisting of the green fluorescent protein (GFP) and different fragments of CRY2 were expressed in parsley protoplasts and the localization of the fusion proteins was determined by fluorescence and confocal laser scanning microscopy. GFP-fusions containing the entire CRY2 protein or its C-terminal region were found exclusively in the nucleus. We conclude from these results that CRY2 is localized in the nucleus and that nuclear localization is mediated by the C-terminal region of CRY2.  相似文献   

10.
We induced acute skeletal muscle necrosis in rats using bupivacaine hydrochloride and found that both 2,5- and 2,3-dihydroxybenzoic acid significantly increased in skeletal muscle. A single administration of dimethyl sulphoxide, a free radical scavenger, significantly lowered concentrations of 2,5- and 2,3-dihydroxybenzoic acid. These results suggest that dimethyl sulphoxide is an effective hydroxyl radical scavenger and may be useful in the treatment of myopathy.  相似文献   

11.
Blue Light Regulation of Cell Division in Chlamydomonas reinhardtii   总被引:1,自引:0,他引:1       下载免费PDF全文
Münzner P  Voigt J 《Plant physiology》1992,99(4):1370-1375
A delay in cell division was observed when synchronized cultures of the unicellular green alga Chlamydomonas reinhardtii growing under heterotrophic conditions were exposed to white light during the second half of the growth period. This effect was also observed when photosynthesis was blocked by addition of the photosystem II inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Light pulses of 10 minutes were sufficient to induce a delay in cell division in the presence or absence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. A delay in cell division was induced by blue light but not by illumination with red or far-red light. The equal intensity action spectrum revealed two peaks at 400 and 500 nm.  相似文献   

12.
Single crystals of the four aromatic bioamine salts phenylethylamine hydrochloride, tyramine hydrochloride, tryptamine hydrochloride, and histamine dihydrochloride were grown in various states of deuteration. Free radicals were produced by exposure to X-rays between 77 and 300 K and investigated by electron spin resonance spectroscopy. Dissociation of atomic hydrogen from C beta of the aliphatic chain occurs in all compounds studied except tryptamine. However deamination as usually present in the analogous amino acids is not found. The C beta-radical is characterized by an anisotropic H alpha-splitting and two isotropic H beta-splittings. The latter splittings depend strongly on temperature in tyramine. In comparison to the analogous amino acids, radical formation in the aromatic residues is favoured. Among the seven different aromatic radicals found only one is identified in histamine but two in each of the three other bioamines. Two of these are characterized by hydrogen dissociation which occurs in phenylethylamine and tyramine. One hydrogen addition radical is found in each of the three compounds phenylethylamine, tyramine and histamine. In tryptamine two different addition radicals are detected. One of the two products can be converted into the other by visible light. The reverse process is induced by heat, thus permitting the switching of the radical site reversibly between two different structures.  相似文献   

13.
WNK family protein kinases are large enzymes that contain the catalytic lysine in a unique position compared with all other protein kinases. These enzymes have been linked to a genetically defined form of hypertension. In this study we introduced mutations to test hypotheses about the position of the catalytic lysine, and we examined mechanisms involved in the regulation of WNK1 activity. Through the analysis of enzyme fragments and sequence alignments, we have identified an autoinhibitory domain of WNK1. This isolated domain, conserved in all four WNKs, suppressed the activity of the WNK1 kinase domain. Mutation of two key residues in this autoinhibitory domain attenuated its ability to inhibit WNK kinase activity. Consistent with these results, the same mutations in a WNK1 fragment that contain the autoinhibitory domain increased its kinase activity. We also found that WNK1 expressed in bacteria is autophosphorylated; autophosphorylation on serine 382 in the activation loop is required for its activity.  相似文献   

14.
DDR2 is a receptor tyrosine kinase whose activating ligands are various collagens. DDR2-mediated cellular signaling has been shown to require Src activity. However, the precise mechanism underlying the Src dependence of DDR2 signaling is unknown. Here, using baculoviral co-expression of the DDR2 cytosolic domain and Src, we show that Src targets three tyrosine residues (Tyr-736, Tyr-740, and Tyr-741) in the activation loop of DDR2 for phosphorylation. This phosphorylation by Src stimulates DDR2 cis-autophosphorylation of additional tyrosine residues. In vitro Shc binding assays demonstrate that phosphotyrosines resulting from DDR2 autophosphorylation are involved in Shc binding to the DDR2 cytosolic domain. Mutating tyrosine 740 of DDR2 to phenylalanine stimulates autophosphorylation of DDR2 to an extent similar to that resulting from Src phosphorylation of DDR2. In addition, the DDR2 Y740F mutant protein displays collagen-independent, constitutively activated signaling. These findings suggest that tyrosine 740 inhibits DDR2 autophosphorylation. Collectively, our findings are consistent with the following mechanism for Src-dependent DDR2 activation and signaling: 1) ligand binding promotes phosphorylation of Tyr-740 in the DDR2 activation loop by Src; 2) Tyr-740 phosphorylation stimulates intramolecular autophosphorylation of DDR2; 3) DDR2 autophosphorylation generates cytosolic domain phosphotyrosines that promote the formation of DDR2 cytosolic domain-Shc signaling complexes.  相似文献   

15.
Blue light was specifically required for the induction of carbonicanhydrase (CA) activity in Chlamydomonas reinhardtii. The enhancingeffect of blue light (460 nm) was saturated at energy fluencerate as low as 0.6-0.8 W/m2. The wavelength dependency curvehad a peak at 460 nm with no effect at wavelengths above 510nm, thus showing the strong similarities to other blue lightresponses in microalgae. CA induction was strongly inhibitedby UV irradiation at 280 nm. Experiments with the flavin quencher,potassium iodide, suggested that flavin is somehow involvedin CA induction. 1On leave from the Institute of Biological Sciences, Collegeof Arts and Sciences, University of the Philippines at Los Banos,4031 College, Laguna, Philippines. (Received August 29, 1988; Accepted November 26, 1988)  相似文献   

16.
Wheat seedlings ( Truicum aestivum L. cv. Starke II, Weibull) grown in a solution of the herbicide SAN 9789 axe deficient in chlorophyll and carotenoids. Such seedlings were used in order to isolate a blue light response of stomata, not mediated by photosynthesis. When illuminated with blue light (430-505 nm) SAN-grown seedlings showed a considerable transpiration response, whereas red light (>590 nm) gave no response whatsoever with the intensities used. The transpiration was measured with hygrometers in an open air-flow system. Furthermore, blue light had a superior effect, relative to red, in causing a transpiration response in untreated green seedlings. The transpiration level after two hours of illumination was higher in blue than in red light, although the blue light had its major effect immediately after the light was switched on. The difference between the effects of blue and red light was most pronounced at low light intensities. This, together with the high sensitivity of SAN-grown seedlings to low ntensity blue light, led to the conclusion that blue light is of special importance at low quantum fluxes. Because of the very low carotenoid content in the SAN-grown seedlings, the role of the carotenoids as photoreceptors for the blue light response of stomata was excluded.  相似文献   

17.
《Molecular cell》2022,82(11):2006-2020.e8
  1. Download : Download high-res image (179KB)
  2. Download : Download full-size image
  相似文献   

18.
19.
The interaction of trifluoperazine with the zwitterionic lipids dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine and with anionic dimyristoylphosphatidylglycerol was studied by means of microcalorimetry and fluorescence spectroscopy. Intercalation of drug molecules into the lipid bilayers was confirmed by the observed differential scanning calorimetry peak broadening and the decrease in chain-melting temperatures. For trifluoperazine:lipid mole ratios higher than 0.4 and 0.6 (for dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine, respectively) the deconvolution of transition profiles into two Gaussian components was possible, which suggests phase separation in the studied mixtures. Deconvolution of the thermograms was not possible for any of the drug:dimyristoylphosphatidylglycerol mole ratios studied. To confirm the existence of phase separation in trifluoperazine-phosphatidylcholine mixtures fluorescence spectroscopy experiments were performed using Laurdan as a probe. From the generalised polarisation versus excitation wavelength dependences, recorded at different temperatures, we conclude that a phase separation occurs in the gel state of the studied trifluoperazine-phosphatidylcholine mixtures. We attribute the existence of domains in the bilayer to the dissimilar interactions of two protonation forms of trifluoperazine with phosphatidylcholine molecules. Structural defects present at domain boundaries could be related to the trifluoperazine induced increase of membrane permeability and fluidity. This may partially explain the mechanism of multidrug resistance modulation by trifluoperazine.  相似文献   

20.
The monarch butterfly (Danaus plexippus) cryptochrome 1 (DpCry1) belongs in the class of photosensitive insect cryptochromes. Here we purified DpCry1 expressed in a bacterial host and obtained the protein with a stoichiometric amount of the flavin cofactor in the two-electron oxidized, FAD(ox), form. Exposure of the purified protein to light converts the FAD(ox) to the FAD*(-) flavin anion radical by intraprotein electron transfer from a Trp residue in the apoenzyme. To test whether this novel photoreduction reaction is part of the DpCry1 physiological photocycle, we mutated the Trp residue that acts as the ultimate electron donor in flavin photoreduction. The mutation, W328F, blocked the photoreduction entirely but had no measurable effect on the light-induced degradation of DpCry1 in vivo. In light of this finding and the recently published action spectrum of this class of Crys, we conclude that DpCry1 and similar insect cryptochromes do not contain flavin in the FAD(ox) form in vivo and that, most likely, the [see text] photoreduction reaction is not part of the insect cryptochrome photoreaction that results in proteolytic degradation of the photopigment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号