首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arachnoidal fibrosis following subarachnoid hemorrhage (SAH) has been suggested to play a pathogenic role in the development of late post-hemorrhagic hydrocephalus in humans. The purpose of this study was to investigate the rate of collagen synthesis in the arachnoid and the dura in the rat under normal conditions and to study the time schedule and the localization of the increased collagen synthesis following an experimental SAH. We found that the activity of prolyl 4-hydroxylase, a key enzyme in collagen synthesis, was 3-fold higher in the dura than that in the arachnoid and was similar to the activity in the skin. We then induced SAH in rats by injecting autologous arterial blood into cisterna magna. After SAH, we observed an increase in prolyl 4-hydroxylase activity of the arachnoid and the dura at 1 week. At this time point the enzyme activity in both tissues was 1.7-1.8-fold compared to that in the controls and after this time point the activities declined but remained slightly elevated at least till week 4. The rate of collagen synthesis was measured in vitro by labeling the tissues with [(3)H]proline. The rate increased to be 1.7-fold at 1 to 2 weeks after the SAH in both of the tissues. Immunohistochemically we observed a deposition of type I collagen in the meninges at 3 weeks after the SAH. SAH is followed by a transient increase in the rate of collagen synthesis in the arachnoid and, surprisingly, also the dura. Increased synthesis also resulted in an accumulation of type I collagen in the meningeal tissue, suggesting that the meninges are a potential site for fibrosis. The time schedule of these biochemical and histological events suggest that meningeal fibrosis may be involved in the pathogenesis of late post-hemorrhagic hydrocephalus.  相似文献   

2.
Parkinson's disease was thought, until recently, to have little or no genetic component. This notion has changed with the identification of three genes, and the mapping of five others, that are linked to rare familial forms of the disease (FPD). The products of the identified genes, alpha-synuclein (PARK 1), parkin (PARK 2), and ubiquitin-C-hydrolase-L1 (PARK 5) are the subject of intense cell-biological and biochemical studies designed to elucidate the underlying mechanism of FPD pathogenesis. In addition, the complex genetics of idiopathic PD is beginning to be unraveled. Genetic information may prove to be useful in identifying new therapeutic targets and identifying the preclinical phase of PD, allowing treatment to begin sooner.  相似文献   

3.
Parkinson's disease was thought, until recently, to have little or no genetic component. This notion has changed with the identification of three genes, and the mapping of five others, that are linked to rare familial forms of the disease (FPD). The products of the identified genes, alpha-synuclein (PARK 1), parkin (PARK 2), and ubiquitin-C-hydrolase-L1 (PARK 5) are the subject of intense cell-biological and biochemical studies designed to elucidate the underlying mechanism of FPD pathogenesis. In addition, the complex genetics of idiopathic PD is beginning to be unraveled. Genetic information may prove to be useful in identifying new therapeutic targets and identifying the preclinical phase of PD, allowing treatment to begin sooner.  相似文献   

4.
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by a loss of dopaminergic neurons in the substantia nigra pars compacta (SNPC) and the presence of intracytoplasmatic inclusions known as Lewy bodies, largely composed of alpha-synuclein (α-syn). PD is a multifactorial disease and its etiology remains largely elusive. Although more than 90% of the cases are sporadic, mutations in several nuclear encoded genes have been linked to the development of autosomal recessive and dominant familial parkinsonian syndromes (Bogaerts et al. (2008) Genes Brain Behav 7, 129-151), enhancing our understanding of biochemical and cellular mechanisms contributing to the disease. Many cellular mechanisms are thought to be involved in the dopaminergic neuronal death in PD, including oxidative stress, intracellular Ca(2+) homeostasis impairment, and mitochondrial dysfunctions. Furthermore, endoplasmic reticulum (ER) stress together with abnormal protein degradation by the ubiquitin proteasome system is considered to contribute to the PD pathogenesis. This review covers all the aspects related to the molecular mechanisms underlying the interplay between mitochondria, ER, and proteasome system in PD-associated neurodegeneration.  相似文献   

5.
Genetics of parkin-linked disease   总被引:7,自引:0,他引:7  
West AB  Maidment NT 《Human genetics》2004,114(4):327-336
Research into Parkinsons disease (PD), once considered the archetypical non-genetic neurodegenerative disorder, has been revolutionized by the identification of a number of genes, mutations of which underlie various familial forms of the disease. Whereas such mutations appear to exist in a relatively small number of individuals from a few families, the study of the function of these genes promises to reveal the fundamental disease pathogenesis, not only of familial forms of the disease, but also of the much more common sporadic PD. The observation that mutations in the second identified PD locus (parkin) are common in juvenile- and early-onset PD and increasing evidence supporting a direct role for parkin in late-onset disease make this gene a particularly compelling candidate for intensified investigation. The determination of the frequency and effect of parkin mutations in various subsets of PD will be crucial for understanding the way in which parkin is related to neurodegenerative mechanisms, and whether these subsets might be effectively identified and treated. In addition, many aspects of parkin-linked disease, originally thought to be well defined, have now been obscured both by genetic studies that preclude a simple model of disease transmission and by clinical and pathological studies that demonstrate broad variability in cases with parkin mutations. Future studies that address the issues in question should have a far-reaching impact in downstream biochemical studies and our understanding of parkins role in PD.  相似文献   

6.
The Neuronal Ceroid Lipofuscinoses (NCL), otherwise known as Batten disease, are a group of neurodegenerative diseases caused by mutations in 13 known genes. All except one NCL is autosomal recessive in inheritance, with similar aetiology and characterised by the accumulation of autofluorescent storage material in the lysosomes of cells. Age of onset and the rate of progression vary between the NCLs. They are collectively one of the most common lysosomal storage diseases, but the enigma remains of how genetically distinct diseases result in such remarkably similar pathogenesis. Much has been learnt from cellular studies about the function of the proteins encoded by the affected genes. Such research has utilised primitive unicellular models such as yeast and amoeba containing gene orthologues, cells derived from naturally occurring (sheep) and genetically engineered (mouse) animal models or patient-derived cells. Most recently, patient-derived induced pluripotent stem cell (iPSC) lines have been differentiated into neural cell-types to study molecular pathogenesis in the cells most profoundly affected by disease. Here, we review how cell models have informed much of the biochemical understanding of the NCLs and how more complex models are being used to further this understanding and potentially act as platforms for therapeutic efficacy studies in the future.  相似文献   

7.
8.
Our understanding of the antiviral actions of IFIT1, one of the most strongly induced interferon stimulated genes (ISGs), has advanced remarkably within the last few years. This review focuses on the recent cellular, biochemical, and structural discoveries that have provided new insight as to how IFIT1 functions as both a sensor and effector molecule of the cellular innate immune system. IFIT1 can detect viral RNA lacking 2-O methylation on their cap structures or displaying a 5′-triphosphate moiety and inhibit their translation or sequester them from active replication. Because of these inhibitory actions, many viruses have evolved unique mechanisms to evade IFIT1 to facilitate replication, spread of infection, and disease pathogenesis.  相似文献   

9.
Because it has been argued that active myogenic tone prolongs cerebral vasospasm for >2 wk after subarachnoid hemorrhage (SAH), we attempted to identify the mechanism that plays the main role in sustaining the prolonged cerebral vasospasm. We especially focused on the roles of biomechanical and phenotypic changes in the cerebral arteries in the mechanisms of prolonged vasospasm after SAH. We used the basilar arteries from a "two-hemorrhage" canine model to make serial measurements of maximal contraction capacity and arterial stiffness (papaverine-insensitive tone) until day 28. We also examined hematoxylin-eosin-stained vasospastic canine basilar arteries for histological changes and immunohistochemically examined them for expression of myosin heavy chain isoforms (SMemb, SM1, and SM2), which are markers of smooth muscle phenotypic changes. Changes in collagen concentration in canine basilar arteries were also measured. Angiographic cerebral vasospasm persisted until day 14 and then gradually diminished; artery diameter returned to the control diameters on day 28. Maximal contraction capacity decreased until day 21 and showed some recovery by day 28. Arterial stiffness, on the other hand, progressed until day 28. Histological examination revealed medial thickening and increased connective tissue until day 21 and a return to control findings by day 28. The increased connective tissue was not accompanied by changes in collagen concentration, suggesting a role of some other protein in the increase in connective tissue. Immunohistochemical studies with anti-SMemb, anti-SM1, and anti-SM2 antibodies showed enhanced expression of SMemb from day 7 to day 21 and disappearance of SM1 and SM2 on days 14 and 21. The changes in myosin heavy chain isoform expression returned to normal on day 28. The above results indicate that biomechanical and phenotypic changes may play a pivotal role in sustaining cerebral vasospasm for >2 wk after SAH, with minimal changes in active myogenic arterial tone.  相似文献   

10.
The formation of vascular networks consisting of arteries, capillaries, and veins is vital in embryogenesis. It is also crucial in adulthood for the formation of a functional vasculature. Cerebral arteriovenous malformations (CAVMs) are linked with a remarkable risk of intracerebral hemorrhage because arterial blood is directly shunted into the veins before the arterial blood pressure is dissipated. The underlying mechanisms responsible for arteriovenous malformation (AVM) growth, progression, and rupture are not fully known, yet the critical role of inflammation in AVM pathogenesis has been noted. The proinflammatory cytokines are upregulated in CAVM, which stimulates overexpression of cell adhesion molecules in endothelial cells (ECs), leading to improved leukocyte recruitment. It is well-known that metalloproteinase-9 secretion by leukocytes disrupts CAVM walls resulting in rupture. Moreover, inflammation alters the angioarchitecture of CAVMs by upregulating angiogenic factors impacting the apoptosis, migration, and proliferation of ECs. A better understanding of the molecular signature of CAVM might allow us to identify biomarkers predicting this complication, acting as a goal for further investigations that may be potentially targeted in gene therapy. The present review is focused on the numerous studies conducted on the molecular signature of CAVM and the associated hemorrhage. The association of numerous molecular signatures with a higher risk of CAVM rupture is shown through inducing proinflammatory mediators, as well as growth factors signaling, Ras-mitogen-activated protein kinase-extracellular signal-regulated kinase, and NOTCH pathways, which are accompanied by cellular level inflammation and endothelial alterations resulting in vascular wall instability. According to the studies, it is assumed that matrix metalloproteinase, interleukin-6, and vascular endothelial growth factor are the biomarkers most associated with CAVM and the rate of hemorrhage, as well as diagnostic methods, with respect to enhancing the patient-specific risk estimation and improving treatment choices.  相似文献   

11.
Intensive research over the last 15 years has led to the identification of several autosomal recessive and dominant genes that cause familial Parkinson’s disease (PD). Importantly, the functional characterization of these genes has shed considerable insights into the molecular mechanisms underlying the etiology and pathogenesis of PD. Collectively; these studies implicate aberrant protein and mitochondrial homeostasis as key contributors to the development of PD, with oxidative stress likely acting as an important nexus between the two pathogenic events. Interestingly, recent genome-wide association studies (GWAS) have revealed variations in at least two of the identified familial PD genes (i.e. α-synuclein and LRRK2) as significant risk factors for the development of sporadic PD. At the same time, the studies also uncovered variability in novel alleles that is associated with increased risk for the disease. Additionally, in-silico meta-analyses of GWAS data have allowed major steps into the investigation of the roles of gene-gene and gene-environment interactions in sporadic PD. The emergent picture from the progress made thus far is that the etiology of sporadic PD is multi-factorial and presumably involves a complex interplay between a multitude of gene networks and the environment. Nonetheless, the biochemical pathways underlying familial and sporadic forms of PD are likely to be shared.  相似文献   

12.
D G Munoz  H Feldman 《CMAJ》2000,162(1):65-72
It is now understood that genetic factors play a crucial role in the risk of developing Alzheimer''s disease (AD). Rare mutations in at least 3 genes are responsible for early-onset familial AD. A common polymorphism in the apolipoprotein E gene is the major determinant of risk in families with late-onset AD, as well as in the general population. Advanced age, however, remains the major established risk factor for AD, although environmental variables may also have some role in disease expression. Some pathogenic factors directly associated with aging include oxidative damage and mutations in messenger RNA. Other factors unrelated to the aging process may, in the future, be amenable to therapeutic intervention by way of estrogen replacement therapy for postmenopausal women, anti-inflammatory drug therapy and reducing vascular risk factors. Older theories, such as aluminum playing a role in the pathogenesis of AD, have been mostly discarded as our understanding of pathogenic mechanisms of AD has advanced.  相似文献   

13.
ObjectPatients with familial intracranial aneurysms (IA) have a higher risk of rupture than patients with sporadic IA. We compared geometric and morphological risk factors for aneurysmal rupture between patients with familial and sporadic aneurysmal subarachnoid hemorrhage (aSAH) to analyse if these risk factors contribute to the increased rupture rate of familial IA.MethodsGeometric and morphological aneurysm characteristics were studied on CT-angiography in a prospectively collected series of patients with familial and sporadic aSAH, admitted between September 2006 and September 2009, and additional patients with familial aSAH retrieved from the prospectively collected database of familial IA patients of our center. Odds ratios (OR) with corresponding 95% confidence intervals (95% CI) were calculated to compare the aneurysm characteristics between patients with familial and sporadic aSAH.ResultsWe studied 67 patients with familial and 184 with sporadic aSAH. OR’s for familial compared with sporadic aSAH were for oval shape 1.16(95%CI:0.65–2.09), oblong shape 0.26(95%CI:0.03–2.13), irregular shape 0.83(95%CI:0.47–1.49), aspect ratio ≥ 1.6 0.94(95%CI:0.54–1.66), contact with the perianeurysmal environment (PAE) 1.15(95%CI:0.56–2.40), deformation by the PAE 1.05(95%CI:0.47–2.35) and for dominance of the posterior communicating artery (PCoA) in case of PCoA aneurysms 1.97(95% CI:0.50–7.83).ConclusionsThe geometric and morphological risk factors for aneurysm rupture do not have a higher prevalence in familial than in sporadic aSAH and thus do not explain the increased risk of IA rupture in patients with familial IA. We recommend further search for other potential risk factors for rupture of familial IA, such as genetic factors.  相似文献   

14.
Subarachnoid hemorrhage (SAH) following aneurysm bleeding accounts for 6% to 8% of all cerebrovascular accidents. Although an aneurysm can be effectively managed by surgery or endovascular therapy, delayed cerebral ischemia is diagnosed in a high percentage of patients resulting in significant morbidity and mortality. Cerebral vasospasm occurs in more than half of all patients after aneurysm rupture and is recognized as the leading cause of delayed cerebral ischemia after SAH. Hemodynamic strategies and endovascular procedures may be considered for the treatment of cerebral vasospasm. In recent years, the mechanisms contributing to the development of vasospasm, abnormal reactivity of cerebral arteries and cerebral ischemia following SAH, have been investigated intensively. A number of pathological processes have been identified in the pathogenesis of vasospasm, including endothelial injury, smooth muscle cell contraction from spasmogenic substances produced by the subarachnoid blood clots, changes in vascular responsiveness and inflammatory response of the vascular endothelium. To date, the current therapeutic interventions remain ineffective as they are limited to the manipulation of systemic blood pressure, variation of blood volume and viscosity and control of arterial carbon dioxide tension. In this scenario, the hormone erythropoietin (EPO) has been found to exert neuroprotective action during experimental SAH when its recombinant form (rHuEPO) is administered systemically. However, recent translation of experimental data into clinical trials has suggested an unclear role of recombinant human EPO in the setting of SAH. In this context, the aim of the current review is to present current evidence on the potential role of EPO in cerebrovascular dysfunction following aneurysmal subarachnoid hemorrhage.  相似文献   

15.
Elastic and collagenous networks in vascular diseases   总被引:3,自引:0,他引:3  
Supravalvular aortic stenosis (SVAS), Marfan syndrome (MFS) and Ehlers-Danlos syndrome type IV (EDS IV) are three clinical entities characterized by vascular abnormalities that result from mutations of structural components of the extracellular matrix (ECM). Analyses of naturally occurring human mutations and of artificially generated deficiencies in the mouse have provided insights into the pathogenesis of these heritable disorders of the connective tissue. SVAS is associated with haploinsufficiency of elastin, one of the two major components of the elastic fibers. SVAS is characterized by narrowing of the arterial lumen due to the failure of regulation of cellular proliferation and matrix deposition. Mutations in fibrillin 1 are the cause of dissecting aneurysm leading to rupture of the ascending aorta. Fibrillin-1 is the building block of the microfibrils that span the entire thickness of the aortic wall and are a major component of the elastic fibers that reside in the medial layer. The vascular hallmark of EDS IV is rupture of large vessels. The phenotype is caused by mutations in type III collagen. The mutations ultimately affect the overall architecture of the collagenous network and the biomechanical properties of the adventitial layer of the vessel wall. Altogether, these genotype-phenotype correlations document the diversified contributions of distinct extracellular macroaggregates to the assembly and function of the vascular matrix.  相似文献   

16.

Background

A number of case-control studies were conducted to investigate the association of common type 2 diabetes (T2D) risk gene polymorphisms with gestational diabetes mellitus (GDM). However, these studies have yielded contradictory results. We therefore performed a meta-analysis to derive a more precise estimation of the association between these polymorphisms and GDM, hence achieve a better understanding to the relationship between T2D and GDM.

Methods

PubMed, EMBASE, ISI web of science and the Chinese National Knowledge Infrastructure databases were systematically searched to identify relevant studies. Data were abstracted independently by two reviewers. A meta-analysis was performed to examine the association between 9 polymorphisms from 8 genes and susceptibility to GDM. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated. Heterogeneity among articles and their publication bias were also tested.

Results

We identified 22 eligible studies including a total of 10,336 GDM cases and 17,445 controls. We found 8 genetic polymorphisms were significantly associated with GDM in a random-effects meta-analysis. These polymorphisms were in or near the following genes: TCF7L2 (rs7903146), MTNR1B (rs10830963), IGF2BP2 (rs4402960), KCNJ11 (rs5219), CDKAL1 (rs7754840), KCNQ1 (rs2237892 and rs2237895) and GCK (rs4607517); while no association was found for PPARG with GDM risk. Similar results were also observed under dominant genetic model for these polymorphisms.

Conclusions

This meta-analysis found 8 genetic variants associated with GDM. The relative contribution and relevance of the identified genes in the pathogenesis of GDM should be the focus of future studies.  相似文献   

17.
Endothelin-1, a potent vasoconstrictive peptide, has been implicated in the pathogenesis of cerebral vasospasm following subarachnoid hemorrhage (SAH). The goal of this study was to evaluate the effect of continuous intravenous infusion of a highly selective endothelin-converting enzyme-1 inhibitor, CGS 35066, on the prevention and reversal of cerebral vasospasm following SAH. New Zealand white rabbits were subjected to SAH by injecting autologous arterial blood into the cisterna magna. Infusion of CGS 35066 at dosages of 1, 3, or 10 mg/kg/ day was initiated either 1 hr and 24 hrs later in the prevention and reversal protocols, respectively. Animals were sacrificed by perfusion-fixation 48 hrs after SAH induction. The cross-sectional areas of basilar arteries were measured using computer-assisted videomicroscopy. Ultrastructural changes in basilar arteries were determined using electron microscopy. CGS 35066 significantly prevented and reversed the arterial narrowing after SAH in all three groups. The mean cross-sectional areas of arteries from animals in both the prevention and reversal protocol groups that received 10 mg/kg/day of CGS 35066 did not differ significantly from those of the healthy controls. Histological studies of the basilar artery in the 10 mg/kg/day treatment group did not show pathomorphological changes, such as corrugation of the endothelium seen at 2 days after SAH induction or vacuole formation in the endothelial cells noted in the vehicle-treated SAH group. These findings suggest that CGS 35066 is a promising therapeutic agent for the prevention and reversal of cerebral vasospasm after SAH. It also prevents the pathological changes in vascular walls due to SAH.  相似文献   

18.
19.
Extracellular matrix influences many cellular events. In this study, we demonstrate that adhesion of human salivary gland (HSG) epithelial cells to fibronectin- or collagen I gel-coated substrates, mediated by β1 integrins, results in substantial alterations in protein and RNA expression profiles. The large numbers of changes in expression suggest that simply changing the adhesive substrate has basic effects on the regulation of cellular biosynthesis. Two-dimensional electrophoresis of [35S]methionine-labeled HSG cell proteins identified significant differences in the patterns of protein expression by cells cultured on nonprecoated substrates, collagen I gels or fibronectin. Thirty-two differentially expressed cDNA clones, which included both novel and previously sequenced genes, were up-regulated within 6 hr by culturing HSG cells on fibronectin or collagen I gels. Therefore, adhesion to collagen I or fibronectin resulted in rapid, widespread changes in cellular biosynthetic control. Expression of some genes was induced by ligation of β1 integrins with antifunctional antibodies, whereas the expression of other genes was not induced. Most of the differentially expressed genes were up-regulated by adhesion to both fibronectin- and collagen I gel-coated substrates, but a few genes were selectively up-regulated on only one substrate. Furthermore, the up-regulated expression of some genes was detected within 3 hr, whereas changes in others required 6 hr. Discrete adhesive substrates and integrin molecules differentially affected the expression of a significant number of genes, suggesting that the cellular responses to adhesion were triggered through several signaling pathways. J. Cell. Physiol. 175:163–173, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    20.

    Background

    Cardiovascular disease, a progressive manifestation of α-L-iduronidase deficiency or mucopolysaccharidosis type I, continues in patients both untreated and treated with hematopoietic stem cell transplantation or intravenous enzyme replacement. Few studies have examined the effects of α-L-iduronidase deficiency and subsequent glycosaminoglycan storage upon arterial gene expression to understand the pathogenesis of cardiovascular disease.

    Methods

    Gene expression in carotid artery, ascending, and descending aortas from four non-tolerized, non-enzyme treated 19 month-old mucopolysaccharidosis type I dogs was compared with expression in corresponding vascular segments from three normal, age-matched dogs. Data were analyzed using R and whole genome network correlation analysis, a bias-free method of categorizing expression level and significance into discrete modules. Genes were further categorized based on module-trait relationships. Expression of clusterin, a protein implicated in other etiologies of cardiovascular disease, was assessed in canine and murine mucopolysaccharidosis type I aortas via Western blot and in situ immunohistochemistry.

    Results

    Gene families with more than two-fold, significant increased expression involved lysosomal function, proteasome function, and immune regulation. Significantly downregulated genes were related to cellular adhesion, cytoskeletal elements, and calcium regulation. Clusterin gene overexpression (9-fold) and protein overexpression (1.3 to 1.62-fold) was confirmed and located specifically in arterial plaques of mucopolysaccharidosis-affected dogs and mice.

    Conclusions

    Overexpression of lysosomal and proteasomal-related genes are expected responses to cellular stress induced by lysosomal storage in mucopolysaccharidosis type I. Upregulation of immunity-related genes implicates the potential involvement of glycosaminoglycan-induced inflammation in the pathogenesis of mucopolysaccharidosis-related arterial disease, for which clusterin represents a potential biomarker.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号