首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Hepatitis B virus (HBV) enhancer I contains cis-acting elements that are both sufficient and essential for liver-specific enhancer function. The EF-C binding site was previously shown to be a key element in enhancer I. EF-C binding activity is evident in hepatic and nonhepatic cells. Although the EF-C binding site is required for efficient HBV enhancer I function, the EF-C site does not possess intrinsic enhancer activity when assayed in the absence of flanking elements. We have defined a novel region in HBV enhancer I, termed the GB element, that is adjacent to and functions in conjunction with the EF-C binding site. The GB element and EF-C site confer interdependent liver-specific enhancer activity in the absence of flanking HBV enhancer sequences. The nucleotide sequence of the GB element is similar to sequences of the DNA binding sites for members of the steroid receptor superfamily. Among these proteins, we demonstrate that HNF-4, RXR (retinoid X receptor), and COUP-TF bind to the GB element in vitro. HNF-4 transactivates a promoter linked to a multimerized GB/EF-C domain via the GB element in vivo in a manner that is dependent on the integrity of the adjacent EF-C binding site. RXR alpha also transactivates promoter expression via the GB element in vivo in response to retinoic acid but in a largely EF-C-independent manner. Finally, we show that COUP-TF antagonizes the activity of the GB element in human liver cells.  相似文献   

7.
An erythroid nuclear protein (EF1), originally detected as a protein binding within the nuclease hypersensitive site upstream of the chicken beta H-globin gene, has been purified. This protein of 37,000-39,000 molecular weight binds to three sites within the hypersensitive region: one between the CCAAT and TATA boxes, the second (further upstream) next to a NF1 binding site, and the third adjacent to a regulatory element found in a number of beta-globin genes. The EF1 protein also binds to an erythroid-specific promoter element of the mouse alpha-globin gene and to two sites within the chicken beta A-globin enhancer. These six EF1-binding sites are related by the consensus sequence A/TGATAA/GG/C. A minor protein of molecular weight 72,000 which co-purifies with EF1 also binds to the same sequences.  相似文献   

8.
9.
10.
A lens-specific enhancer, an 84bp element between base pairs -162 and -79, of the chicken alpha A-crystallin gene is composed of two motifs, alpha CE1 (-162 and -134) and alpha CE2 (-119 and -99). Previous studies showed that a nuclear factor which binds to alpha CE1, termed alpha CEF1, is present at high levels in lens cells. Methylation interference analysis identified an inverted repeat of 5bp separated by 4bp, 5'-CTGGTTCCCACCAG-3', between positions -153 and -140 as an alpha CEF1-binding site. Gel mobility shift assays using synthetic oligonucleotides with site-directed mutations revealed that the alpha CEF1-binding consensus sequence is 5'-C(T/A)GGN6CC(A/T)G-3'. Comparison of this binding motif with regulatory sequences of diverse crystallin genes from diverse species suggests that alpha CE1 may be a ubiquitous crystallin gene enhancer.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Previous studies have shown that mouse gamma F-crystallin sequences -759 to +45, which include the core promoter and two upstream enhancer elements, contain sufficient information for directing gene expression to terminally differentiated fiber cells of the ocular lens. To investigate the role that proximal sequences of the mouse gamma F-crystallin promoter play in the developmental regulation of gene expression, we generated transgenic mice containing the lacZ gene driven by either mouse gamma F-crystallin sequences -171 to +45, which lack functional enhancers, or a hybrid hamster alpha A-/mouse gamma F-crystallin promoter, which contains the hamster alpha A-crystallin enhancer instead of operational gamma F-crystallin enhancers. In situ analysis of lacZ expression in these mice revealed that the mouse gamma F-crystallin promoter segment -171 to +45, which shows low activity in vitro, is able to direct gene expression to the fiber cells in the nucleus of the lens. However, animals expressing gamma 171-lacZ show both a lower level of expression of the lacZ gene and a narrower pattern of staining in the lens nucleus than mice expressing gamma 759-lacZ, which contains the two enhancer elements located between -392 and -278 and -226 to -123.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Tissue morphogenesis requires intricate temporal and spatial control of gene expression that is executed through specific gene regulatory networks (GRNs). GRNs are comprised from individual subcircuits of different levels of complexity. An important question is to elucidate the mutual relationship between those genes encoding DNA-binding factors that trigger the subcircuit with those that play major "later" roles during terminal differentiation via expression of specific genes that constitute the phenotype of individual tissues. The ocular lens is a classical model system to study tissue morphogenesis. Pax6 is essential for both lens placode formation and subsequent stages of lens morphogenesis, whereas c-Maf controls terminal differentiation of lens fibers, including regulation of crystallins, key lens structural proteins required for its transparency and refraction. Here, we show that Pax6 directly regulates c-Maf expression during lens development. A 1.3-kb c-Maf promoter with a 1.6-kb upstream enhancer (CR1) recapitulated the endogenous c-Maf expression pattern in lens and retinal pigmented epithelium. ChIP assays revealed binding of Pax6 and c-Maf to multiple regions of the c-Maf locus in lens chromatin. To predict functional Pax6-binding sites, nine novel variants of Pax6 DNA-binding motifs were identified and characterized. Two of these motifs predicted a pair of Pax6-binding sites in the CR1. Mutagenesis of these Pax6-binding sites inactivated transgenic expression in the lens but not in retinal pigmented epithelium. These data establish a novel regulatory role for Pax6 during lens development, link together the Pax6/c-Maf/crystallin regulatory network, and suggest a novel type of GRN subcircuit that controls a major part of embryonic lens development.  相似文献   

19.
20.
Wahlin J  Cohn M 《Nucleic acids research》2000,28(12):2292-2301
A wide divergence has been detected in the telomeric sequences among budding yeast species. Despite their length and homogeneity differences, all these yeast telomeric sequences show a conserved core which closely matches the consensus RAP1-binding sequence. We demonstrate that the RAP1 protein binds this sequence core, without involving the diverged sequences outside the core. In Saccharomyces castellii and Saccharomyces dairensis specific classes of interspersed variant repeats are present. We show here that a RAP1-binding site is formed in these species by connecting two consecutive 8 bp telomeric repeats. DNase I footprint analyses specify the binding site as the 13 bp sequence CTGGGTGTCTGGG. The RAP1 protein also binds the variant repeats, although with a lowered affinity. However, a split footprint is produced when RAP1 binds a variant repeat where the two half-sites of the binding site are separated by an additional 6 nt. This is probably caused by the intervening sequence looping out of the RAP1-DNA complex. We suggest that the bipartite subdomain structure of the RAP1 protein allows it to remodel telomeric chromatin, a feature which may be of great relevance for telomeric chromatin assembly and structure in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号