首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bilirubin oxidase (EC:1.3.3.5) purified from a culture medium of Myrothecium verrucaria MT-1 (authentic enzyme) catalyzes the oxidation of bilirubin to biliverdin in vitro and recombinant enzyme (wild type) was obtained by using an overexpression system of the bilirubin oxidase gene with Aspergillus oryzae harboring an expression vector. The absorption and ESR spectra showed that both bilirubin oxidases are multicopper oxidases containing type 1, type 2, and type 3 coppers similar to laccase, ascorbate oxidase, and ceruloplasmin. Site-directed mutagenesis has been performed for the possible ligands of each type of copper. In some mutants, Cys457 --> Val, Ala, His94 --> Val, and His134.136 --> Val, type 1 and type 2 copper centers were perturbed completely and the enzyme activity was completely lost. Differing from the holoenzyme, these mutants showed type 3 copper signals. However, the optical and magnetic properties characteristic of type 1 copper were retained even by mutating one of the type 1 copper ligands, i.e., a mutant, Met467 --> Gly, showed a weak but apparent enzyme activity. A double mutant His456.458 --> Val had only type 1 Cu, showing a blue band at 600 nm (epsilon = 1.6 x 10(3)) and an ESR signal with very narrow hyperfine splitting (A parallel = 7.2 x 10(-)3 cm-1). Since the type 2 and type 3 coppers are not present, the mutant did not show enzyme activity. These results strongly imply that the peculiar sequence in bilirubin oxidase, His456-Cys457-His458, forms an intramolecular electron-transfer pathway between the type 1 copper site and the trinuclear center composed of the type 2 and type 3 copper sites.  相似文献   

2.
3.
Han X  Zhao M  Lu L  Liu Y 《Fungal biology》2012,116(8):863-871
Myrothecium verrucaria 3.2190 is a nonligninolytic fungus that produces bilirubin oxidase. Both M. verrucaria and the extracellular bilirubin oxidase were tested for their ability to decolorize indigo carmine. The biosorption and biodegradation of the dye were detected during the process of decolorization; more than 98% decolorization efficiency was achieved after 7 days at 26°C. Additionally, the crude bilirubin oxidase can efficiently decolorize indigo carmine at 30°C~50°C, pH 5.5~9.5 with dye concentrations of 50 mg l(-1)~200 mg l(-1). Bilirubin oxidase was purified and visualized as a single band on native polyacrylamide gel electrophoresis (PAGE). Several enzymatic properties of the purified enzyme were investigated. Moreover, the identity of the purified bilirubin oxidase (BOD) was confirmed by matrix assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF-MS). These results demonstrate that the purified bilirubin oxidase in M. verrucaria strain has potential application in dye effluent decolorization.  相似文献   

4.
胆红素氧化酶产酶菌株的分离及最佳产酶条件的研究   总被引:9,自引:0,他引:9  
A bilirubin oxidase (EC 1.3.3.5) producing strain, Mv 2.1089, was isolated from several strains of Myrothecium verrucaria by dilution method. The optimum conditions of enzyme production were investigated and the results were as follows: the suitable medium was cultured at 25 degrees C on a rotating shaker glucose and peptone, at pH 6.0. The strain was cultured at 25 degrees C on a rotating shaker (150 r/min) for 96 h. Bilirubin oxidase with 0.5-1.5 u/ml was obtained in the culture medium.  相似文献   

5.
The redox state of type I Cu in Myrothecium verrucaria bilirubin oxidase (BO), a multicopper oxidase utilized in the clinical investigation of liver, is an equilibrium state of the oxidized and reduced forms, reflected in the reversible absorption and electron paramagnetic resonance (EPR) spectral changes depending on pH.  相似文献   

6.
Bilirubin oxidase (BO) from Myrothecium verrucaria (authentic BO) catalyzing the oxidation of bilirubin to biliverdine was overexpressed in the methylotrophic yeast, Pichia pastoris. The cDNA encoding BO was cloned into the P. pastoris expression vector pPIC9K under the control of the alcohol oxidase 1 promoter and its protein product was secreted using the Saccharomyces cerevisiae alpha-mating factor signal sequence. The productivity of recombinant BO (rBO) in P. pastoris was approximately 5000 U/L of culture broth, being about 2.5- and 250-fold higher than rBO expressed in Aspergillus oryzae and S. cerevisiae, respectively. The calculated molecular mass of rBO consisting of 538 amino acids was 60,493 kDa, however, that of SDS-PAGE was 66 kDa because of non-native type N-linked sugar chains. The spectroscopic properties of rBO were typical of multicopper oxidase containing four Cu ions per protein molecule. The specific activity to oxidize bilirubin was 57 U/mg, having a value about twice that of authentic BO and rBO expressed in A. oryzae. Moreover, the thermostability of rBO expressed in P. pastoris was significantly high compared to the authentic BO previously reported. Accordingly, a heterologous expression system of rBO to meet clinical and industrial needs was constructed.  相似文献   

7.
An enzyme showing alkaliphilic laccase activity was purified from the culture supernatant of Myrothecium verrucaria 24G-4. The enzyme was highly stable under alkaline conditions, showed an optimum reaction pH of 9.0 for 4-aminoantipyrine/phenol coupling, and decolorized synthetic dyes under alkaline conditions. It showed structural and catalytic similarities with bilirubin oxidase, but preferably oxidized phenolic compounds. The enzyme catalyzed veratryl alcohol oxidation at pH 9.0 with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as a mediator, suggesting that the laccase mediator system functioned well under alkaline conditions.  相似文献   

8.
9.
10.
11.
12.
13.
14.
The fractionation of Myrothecium verrucaria cellulase by gel filtration   总被引:3,自引:1,他引:2  
1. Culture filtrates from Myrothecium verrucaria have been fractionated by gel filtration on Sephadex G-75 to give three major cellulolytic components with molecular weights of about 55000, 30000 and 5300. 2. The middle component has the bulk (90%) of the total carboxymethylcellulase activity and is little affected by exposure to cotton. The other two, which are mainly responsible for the activity of the filtrate towards cotton, are removed or deactivated by exposure to it. These observations accord with the previously reported behaviour of the whole culture filtrate. There is no evidence for interconversion of, or synergism between, these components. 3. Temperature control during gel filtration is necessary for reproducible results at high resolution. The effect of a change in temperature has been explained in terms of changes in the degree of swelling of the gel particles.  相似文献   

15.
16.
Utilization of cellulose from waste paper by Myrothecium verrucaria   总被引:4,自引:0,他引:4  
Extensive screening studies on cellulolytic bacteria and fungi led to the selection of Myrothecium verrucaria as the organism producing the maximum rate of protein biosynthesis from ball-milled newspaper. Studies in aerated stirred-jar fermentors were carried out to determine the conditions for maximum protein synthesis rate and maximum final protein concentration. The optimum aeration rate was 250 to 374 mM of oxygen at 300 to 400 rpm stirring rate. The pH optimum was broad, from 3.9 to 6.5. Urea at 0.03% and yeast autolysate at 0.1% stimulated growth rate and protein production. The maximum rate of protein biosynthesis and the maximum protein yield were 0.3 g/liter/day and 1.42 g/liter, respectively, from medium G3 with 4% ball-milled newspaper. The final product, obtained by evaporation of the total culture, was 33.7 g from one liter of medium which originally contained 40 g of ball-milled newspaper and 11.3 g of other dissolved materials. The protein content of this final product was 3.3 g, calculated from total organic N × 6.25 or 1.42 g calculated from the biuret method. Both the synthesis rate and the final cell yield are below those obtainable by growing Fungi Imperfecti, yeasts or bacteria on soluble materials such as glucose.  相似文献   

17.
18.
19.
Lillehoj EB  Smith FG 《Plant physiology》1966,41(10):1553-1560
Ascorbic acid oxidase activity in Myrothecium verrucaria extracts resulted in O(2) uptake exceeding 0.5 mole per mole of ascorbic acid and in CO(2) evolution. Measurement of oxidized ascorbic acid at completion of the reaction demonstrated that an average of 10% of the oxidized product disappeared. A comparison of the gas exchange data with the amount of ascorbic acid not accounted for indicated that the reaction could not be explained by independent oxidase and oxygenase systems. Chromatographic examination of the reaction mixtures identified l-threonic acid. Experiments with ascorbic acid-1-(14)C showed that C-1 was partially decarboxylated during the oxidation. Test of the fungal extracts for enzymes that might explain the deviation from expected stoichiometry showed that phenolase, glutathione reductase, cytochrome oxidase, peroxidase and oxalic decarboxylase were not involved. Addition of azide in concentrations sufficient to block catalase increased excess O(2) consumption about 65%. No enzymes were found that could directly attack oxidized ascorbic acid. H(2)O(2) accumulated during oxidation in azide-blocked systems.The O(2) excess could be explained by assuming the enzyme had peroxidative capacity on a reductant other than ascorbic acid. An intermediate of ascorbic acid oxidation appeared to function as the substrate yielding CO(2) and l-threonic acid on degradation. The increase in excess O(2) utilized in azide-blocked systems and the H(2)O(2) accumulation also were explained by the proposed scheme.Another interpretation would involve production of free radicals during ascorbic acid oxidation. Evidence for this was the ability of extracts to oxidize DPNH in the presence of ascorbic acid. Oxygen radicals formed in such reactions were considered possible agents of degradation of ascorbic acid.  相似文献   

20.
The type I Cu site in the Cys457Ser mutant of Myrothecium verrucaria bilirubin oxidase was vacant, but the trinuclear center composed of a type II Cu and a pair of type III Cu's was fully occupied by three Cu ions. Cys457Ser could react with dioxygen, affording reaction intermediate I with absorption maxima at 340, 470, and 675 nm. This intermediate corresponds to that obtained from laccase, whose type I Cu is cupric and type II and III Cu's are cuprous [Zoppellaro, G., Sakurai, T., and Huang, H. (2001) J. Biochem. 129, 949-953] or whose type I Cu is substituted with Hg [Palmer, A. E., Lee, S. K., and Solomon, E. I. (2001) J. Am. Chem. Soc. 123, 6591-6599]. Another type I Cu mutant, Met467Gln, with modified spectroscopic properties and redox potential, afforded reaction intermediate II with absorption maxima at 355 and 450 nm. This intermediate corresponds to that obtained during the reaction of laccase [Sundaram, U. M., Zhang, H. H., Hedman, B., Hodgson, K. O., and Solomon, E. I. (1997) J. Am. Chem. Soc. 119, 12525-12540; Huang, H., Zoppellaro, G., and Sakurai, T. (1999) J. Biol. Chem. 274, 32718-32724]. According to a three-dimensional model of bilirubin oxidase, Asp105 is positioned near the trinuclear center. Asp105Glu and Asp105Ala exhibited 46 and 7.5% bilirubin oxidase activity compared to the wild-type enzyme, respectively, indicating that Asp105 conserved in all multi-copper oxidases donates a proton to reaction intermediates I and II. In addition, this amino acid might be involved in the formation of the trinuclear center and in the binding of dioxygen based on the difficulties in incorporating four Cu ions in Asp105Ala and Asp105Asn and their reactions with dioxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号