首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IL-17A is originally identified as a proinflammatory cytokine that induces neutrophils. Although IL-17A production by CD4(+) Th17 T cells is well documented, it is not clear whether IL-17A is produced and participates in the innate immune response against infections. In the present report, we demonstrate that IL-17A is expressed in the liver of mice infected with Listeria monocytogenes from an early stage of infection. IL-17A is important in protective immunity at an early stage of listerial infection in the liver because IL-17A-deficient mice showed aggravation of the protective response. The major IL-17A-producing cells at the early stage were TCR gammadelta T cells expressing TCR Vgamma4 or Vgamma6. Interestingly, TCR gammadelta T cells expressing both IFN-gamma and IL-17A were hardly detected, indicating that the IL-17A-producing TCR gammadelta T cells are distinct from IFN-gamma-producing gammadelta T cells, similar to the distinction between Th17 and Th1 in CD4(+) T cells. All the results suggest that IL-17A is a newly discovered effector molecule produced by TCR gammadelta T cells, which is important in innate immunity in the liver.  相似文献   

2.
IL-23 and IL-17A regulate granulopoiesis through G-CSF, the main granulopoietic cytokine. IL-23 is secreted by activated macrophages and dendritic cells and promotes the expansion of three subsets of IL-17A-expressing neutrophil-regulatory T (Tn) cells; CD4(-)CD8(-)alphabeta(low), CD4(+)CD8(-)alphabeta(+) (Th17), and gammadelta(+) T cells. In this study, we investigate the effects of IL-17A on circulating neutrophil levels using IL-17R-deficient (Il17ra(-/-)) mice and Il17ra(-/-)Itgb2(-/-) mice that lack both IL-17R and all four beta(2) integrins. IL-17R deficiency conferred a reduction in neutrophil numbers and G-CSF levels, as did Ab blockade against IL-17A in wild-type mice. Bone marrow transplantation revealed that IL-17R expression on nonhemopoietic cells had the greatest effects on regulating blood neutrophil counts. Although circulating neutrophil numbers were reduced, IL-17A expression, secretion, and the number of IL-17A-producing Tn cells were elevated in Il17ra(-/-) and Il17ra(-/-)Itgb2(-/-) mice, suggesting a negative feedback effect through IL-17R. The negative regulation of IL-17A-producing T cells and IL-17A and IL-17F gene expression through the interactions of IL-17A or IL-17F with IL-17R was confirmed in splenocyte cultures in vitro. We conclude that IL-17A regulates blood neutrophil counts by inducing G-CSF production mainly in nonhemopoietic cells. IL-17A controls the expansion of IL-17A-producing Tn cell populations through IL-17R.  相似文献   

3.
Mice with genetic deletion of the cholesterol transporter ATP binding cassette G1 (ABCG1) have pulmonary lipidosis and enhanced innate immune responses in the airway. Whether ABCG1 regulates adaptive immune responses to the environment is unknown. To this end, Abcg1(+/+) and Abcg1(-/-) mice were sensitized to OVA via the airway using low-dose LPS as an adjuvant, and then challenged with OVA aerosol. Naive Abcg1(-/-) mice displayed increased B cells, CD4(+) T cells, CD8(+) T cells, and dendritic cells (DCs) in lung and lung-draining mediastinal lymph nodes, with lung CD11b(+) DCs displaying increased CD80 and CD86. Upon allergen sensitization and challenge, the Abcg1(-/-) airway, compared with Abcg1(+/+), displayed reduced Th2 responses (IL-4, IL-5, eosinophils), increased neutrophils and IL-17, but equivalent airway hyperresponsiveness. Reduced Th2 responses were also found using standard i.p. OVA sensitization with aluminum hydroxide adjuvant. Mediastinal lymph nodes from airway-sensitized Abcg1(-/-) mice produced reduced IL-5 upon ex vivo OVA challenge. Abcg1(-/-) CD4(+) T cells displayed normal ex vivo differentiation, whereas Abcg1(-/-) DCs were found paradoxically to promote Th2 polarization. Th17 cells, IL-17(+) γδT cells, and IL-17(+) neutrophils were all increased in Abcg1(-/-) lungs, suggesting Th17 and non-Th17 sources of IL-17 excess. Neutralization of IL-17 prior to challenge normalized eosinophils and reduced neutrophilia in the Abcg1(-/-) airway. We conclude that Abcg1(-/-) mice display IL-17-mediated suppression of eosinophilia and enhancement of neutrophilia in the airway following allergen sensitization and challenge. These findings identify ABCG1 as a novel integrator of cholesterol homeostasis and adaptive immune programs.  相似文献   

4.
Substantial CD8(+) T cell responses are generated after infection of mice with recombinant Listeria monocytogenes strains expressing a model epitope (lymphocytic choriomeningitis virus NP(118-126)) in secreted and nonsecreted forms. L. monocytogenes gains access to the cytosol of infected cells, where secreted Ags can be accessed by the endogenous MHC class I presentation pathway. However, the route of presentation of the nonsecreted Ag in vivo remains undefined. In this study we show that neutrophil-enriched peritoneal exudate cells from L. monocytogenes-infected mice can serve as substrates for in vitro cross-presentation of both nonsecreted and secreted Ag by dendritic cells as well as for in vivo cross-priming of CD8(+) T cells. In addition, specific neutrophil depletion in vivo by low dose treatment with either of two Ly6G-specific mAb substantially decreased the relative CD8(+) T cell response against the nonsecreted, but not the secreted, Ag compared with control Ab-treated mice. Thus, neutrophils not only provide rapid innate defense against infection, but also contribute to shaping the specificity and breadth of the CD8(+) T cell response. In addition, cross-presentation of bacterial Ags from neutrophils may explain how CD8(+) T cell responses are generated against Ags from extracellular bacterial pathogens.  相似文献   

5.
A CD30 ligand (CD30L, CD153) is a type II membrane-associated glycoprotein belonging to the TNF family. To illustrate the potential role of CD30L in CD4(+) Th1 cell responses, we investigated the fate of Ag-specific CD4(+) T cells in CD30L-deficient (CD30L(-/-)) mice after Mycobacterium bovis bacillus Calmette-Guérin (BCG) infection. The number of bacteria was significantly higher in organs of CD30L(-/-) mice than in wild-type (WT) mice 4 wk postinfection. The numbers of purified protein derivative- or Ag85B-specific-IFN-gamma-producing-CD4(+) T cells in spleen, lung, or peritoneal exudate cells were significantly fewer in CD30L(-/-) mice than in WT mice. During the infection, CD30L was expressed mainly by CD44(+)CD3(+)CD4(+) T cells but not by CD3(+)CD8(+) T cells, B cells, dendritic cells, or macrophages. Costimulation with agonistic anti-CD30 mAb or coculturing with CD30L-transfected P815 cells restored IFN-gamma production by CD4(+) T cells from BCG-infected CD30L(-/-) mice. Coculturing with CD30L(+/+)CD4(+) T cells from BCG-infected WT mice also restored the number of IFN-gamma(+)CD30L(-/-)CD4(+) T cells. When transferred into the CD30L(+/+) mice, Ag-specific donor CD30L(-/-) CD4(+) T cells capable of producing IFN-gamma were restored to the compared level seen in CD30L(+/+) CD4(+) T cells on day 10 after BCG infection. When naive CD30L(+/+) T cells were transferred into CD30L(-/-) mice, IFN-gamma-producing-CD4(+) Th1 cells of donor origin were normally generated following BCG infection, and IFN-gamma-producing-CD30L(-/-)CD4(+) Th1 cells of host origin were partly restored. These results suggest that CD30L/CD30 signaling executed by CD30(+) T-CD30L(+) T cell interaction partly play a critical role in augmentation of Th1 response capable of producing IFN-gamma against BCG infection.  相似文献   

6.
Naive Ag-specific CD8(+) T cells expand, contract, and become memory cells after infection and/or vaccination. Memory CD8(+) T cells provide faster, more effective secondary responses against repeated exposure to the same pathogen. Using an adoptive transfer system with low numbers of trackable nontransgenic memory CD8(+) T cells, we showed that secondary responses can be comprised of both primary (naive) and secondary (memory) CD8(+) T cells after bacterial (Listeria monocytogenes) and/or viral (lymphocytic choriomeningitis virus) infections. The level of memory CD8(+) T cells present at the time of infection inversely correlated with the magnitude of primary CD8(+) T cell responses against the same epitope but directly correlated with the level of protection against infection. However, similar numbers of Ag-specific CD8(+) T cells were found 8 days postinfection no matter how many memory cells were present at the time of infection. Rapid contraction of primary CD8(+) T cell responses was not influenced by the presence of memory CD8(+) T cells. However, contraction of secondary CD8(+) T cell responses was markedly prolonged compared with primary responses in the same host mice. This situation occurred in response to lymphocytic choriomeningitis virus or L. monocytogenes infection and for CD8(+) T cell responses against multiple epitopes. The delayed contraction of secondary CD8(+) T cells was also observed after immunization with peptide-coated dendritic cells. Together, the results show that the level of memory CD8(+) T cells influences protective immunity and activation of naive precursors specific for the same epitope but has little impact on the magnitude or program of the CD8(+) T cell response.  相似文献   

7.
T cell activation is controlled by incompletely defined opposing stimulation and suppression signals that together sustain the balance between optimal host defense against infection and peripheral tolerance. In this article, we explore the impacts of Foxp3(+) regulatory T cell (Treg) suppression in priming Ag-specific T cell activation under conditions of noninfection and infection. We find the transient ablation of Foxp3(+) Tregs unleashes the robust expansion and activation of peptide-stimulated CD8(+) T cells that provide protection against Listeria monocytogenes infection in an Ag-specific fashion. By contrast, Treg ablation had nonsignificant impacts on the CD8(+) T cell response primed by infection with recombinant L. monocytogenes. Similarly, nonrecombinant L. monocytogenes administered with peptide stimulated the expansion and activation of CD8(+) T cells that paralleled the response primed by Treg ablation. Interestingly, these adjuvant properties of L. monocytogenes did not require CD8(+) T cell stimulation by IL-12 produced in response to infection, but instead were associated with sharp reductions in Foxp3(+) Treg suppressive potency. Therefore, Foxp3(+) Tregs impose critical barriers that, when overcome naturally during infection or artificially with ablation, allow the priming of protective Ag-specific CD8(+) T cells.  相似文献   

8.
To investigate the potential role of endogenous IL-15 in mycobacterial infection, we examined protective immunity in IL-15-deficient (IL-15(-/-)) mice after infection with Mycobacterium bovis bacillus Calmette-Guérin (BCG) or recombinant OVA-expressing BCG (rBCG-OVA). IL-15(-/-) mice exhibited an impaired protection in the lung on day 120 after BCG infection as assessed by bacterial growth. CD4(+) Th1 response capable of producing IFN-gamma was normally detected in spleen and lung of IL-15(-/-) mice on day 120 after infection. Although Ag-specific CD8 responses capable of producing IFN-gamma and exhibiting cytotoxic activity were detected in the lung on day 21 after infection with rBCG-OVA, the responses were severely impaired on days 70 and 120 in IL-15(-/-) mice. The degree of proliferation of Ag-specific CD8(+) T cells in IL-15(-/-) mice was similar to that in wild-type mice during the course of infection with rBCG-OVA, whereas sensitivity to apoptosis of Ag-specific CD8(+) T cells significantly increased in IL-15(-/-) mice. These results suggest that IL-15 plays an important role in the development of long-lasting protective immunity to BCG infection via sustaining CD8 responses in the lung.  相似文献   

9.
Espinosa V  Rivera A 《Cytokine》2012,58(1):100-106
CD4 T cells play important and non-redundant roles in protection against infection with diverse fungi. Distinct CD4 T cell subsets can mediate protection against fungal disease where Th1 and Th17 CD4 T cell subsets have been found to promote fungal clearance and protective immunity against diverse fungal pathogens. The differentiation of na?ve CD4 T cells into Th1 or Th17 cells is crucially controlled by their interaction with dendritic cells and instructed by cytokines. IL-12 and IFN-γ promote Th1 differentiation while TGF-β, IL-6, IL-1, IL-21 and IL-23 promote Th17 differentiation and maintenance. The production of these cytokines by DCs is in turn regulated by innate receptors triggered in response to fungal infection. In this review we will discuss the contributions of cytokines found to influence fungus-specific CD4 T cell differentiation and their role in defense against fungal disease. We will also highlight the contributions of innate receptors involved in recognition of fungi and how they shape cytokine secretion and CD4 T cell differentiation.  相似文献   

10.
The differentiation of naive CD4 T cells into specific effector subsets is controlled in large part by the milieu of cytokines present during their initial encounter with Ag. Cytokines that drive differentiation of the newly described Th17 lineage have been characterized in vitro, but the cytokines that prime commitment to this lineage in response to infection in vivo are less clear. Listeria monocytogenes (Lm) induces a strong Th1 response in wild-type mice. By contrast, we demonstrate that in the absence of IL-12p40 (or IFN-gamma) and type I IFN receptor signaling, the Th1 Ag-specific CD4 T cell response is virtually abolished and replaced by a relatively low magnitude Th17-dominated response. This Th17 response was dependent on TGF-beta and IL-6. Despite this change in CD4 T cell response, neither the kinetics of the CD4 and CD8 T cell responses, the quality of the CD8 T cell response, nor the ability of CD8 T cells to mediate protection were affected. Thus, generation of protective CD8 T cell immunity was resilient to perturbations that replace a strong Th1-dominated to a reduced magnitude Th17-dominated Ag-specific CD4 T cell response.  相似文献   

11.
IL-17 is a cytokine produced by T cells in response to IL-23. Recent data support a new subset of CD4 Th cells distinct from Th1 or Th2 cells that produce IL-17 and may contribute to inflammation. In this study, we demonstrate that, in naive mice, as well as during Mycobacterium tuberculosis infection, IL-17 production is primarily from gammadelta T cells and other non-CD4(+)CD8(+) cells, rather than CD4 T cells. The production of IL-17 by these cells is stimulated by IL-23 alone, and strongly induced by the cytokines, including IL-23, produced by M. tuberculosis-infected dendritic cells. IL-23 is present in the lungs early in infection and the IL-17-producing cells, such as gammadelta T cells, may represent a central innate protective response to pulmonary infection.  相似文献   

12.
During the course of a microbial infection, different antigen presenting cells (APCs) are exposed and contribute to the ensuing immune response. CD8α(+) dendritic cells (DCs) are an important coordinator of early immune responses to the intracellular bacteria Listeria monocytogenes (Lm) and are crucial for CD8(+) T cell immunity. In this study, we examine the contribution of different primary APCs to inducing immune responses against Lm. We find that CD8α(+) DCs are the most susceptible to infection while plasmacytoid DCs are not infected. Moreover, CD8α(+) DCs are the only DC subset capable of priming an immune response to Lm in vitro and are also the only APC studied that do so when transferred into β2 microglobulin deficient mice which lack endogenous cross-presentation. Upon infection, CD11b(+) DCs primarily secrete low levels of TNFα while CD8α(+) DCs secrete IL-12 p70. Infected monocytes secrete high levels of TNFα and IL-12p70, cytokines associated with activated inflammatory macrophages. Furthermore, co-culture of infected CD8α(+) DCs and CD11b+ DCs with monocytes enhances production of IL-12 p70 and TNFα. However, the presence of monocytes in DC/T cell co-cultures attenuates T cell priming against Lm-derived antigens in vitro and in vivo. This suppressive activity of spleen-derived monocytes is mediated in part by both TNFα and inducible nitric oxide synthase (iNOS). Thus these monocytes enhance IL-12 production to Lm infection, but concurrently abrogate DC-mediated T cell priming.  相似文献   

13.
Differentiation of Ag-specific T cells into IFN-gamma producers is essential for protective immunity to intracellular pathogens. In addition to stimulation through the TCR and costimulatory molecules, IFN-gamma production is thought to require other inflammatory cytokines. Two such inflammatory cytokines are IL-12 and type I IFN (IFN-I); both can play a role in priming naive T cells to produce IFN-gamma in vitro. However, their role in priming Ag-specific T cells for IFN-gamma production during experimental infection in vivo is less clear. In this study, we examine the requirements for IL-12 and IFN-I, either individually or in combination, for priming Ag-specific T cell IFN-gamma production after Listeria monocytogenes (Lm) infection. Surprisingly, neither individual nor combined defects in IL-12 or IFN-I signaling altered IFN-gamma production by Ag-specific CD8 T cells after Lm infection. In contrast, individual defects in either IL-12 or IFN-I signaling conferred partial ( approximately 50%) reductions, whereas combined deficiency in both IL-12 and IFN-I signaling conferred more dramatic (75-95%) reductions in IFN-gamma production by Ag-specific CD4 T cells. The additive effects of IL-12 and IFN-I signaling on IFN-gamma production by CD4 T cells were further demonstrated by adoptive transfer of transgenic IFN-IR(+/+) and IFN-IR(-/-) CD4 T cells into normal and IL-12-deficient mice, and infection with rLm. These results demonstrate an important dichotomy between the signals required for priming IFN-gamma production by CD4 and CD8 T cells in response to bacterial infection.  相似文献   

14.
Protective immunity to the fungus Candida albicans is mediated by Ag-specific Th1 cells. Paradoxically, some Th2 cytokines are required for the maintenance of Th1-mediated immune resistance to the fungus. Therefore, in addition to the Th1/Th2 balance, other mechanisms seem to be involved in the regulation of Th1 immunity to the fungus. Here we show that CD4(+)CD25(+) T cells, negatively regulating antifungal Th1 reactivity, are generated in mice with candidiasis. CD4(+)CD25(+) T cells were not generated in B7-2- or CD28-deficient mice or in condition of IL-10 signaling deficiency. Accordingly, although capable of efficiently restricting the fungal growth, these mice experienced inflammatory pathology and were incapable of resistance to reinfection. CD4(+)CD25(+) T cells poorly proliferated in vitro; were highly enriched for cells producing IL-4, IL-10, and TGF-beta; and required IL-10-producing, Candida hypha-activated dendritic cells for generation. Adoptive transfer of CD4(+)CD25(+) T cells or IL-10-producing dendritic cells restored resistance to reinfection and decreased inflammation in B7-2-deficient mice. These results show that oral tolerance induced by Candida hyphae is required for the occurrence of long-lasting protective immunity after yeast priming. The implication is that preventing reactivation rather than favoring sterilizing immunity to ubiquitous fungal pathogens may represent the ultimate expectation of vaccine-based strategies.  相似文献   

15.
Whether IFN-gamma contributes to the per-cell protective capacity of memory CD8(+) T cells against Listeria monocytogenes (LM) has not been formally tested. In this study, we generated LM Ag-specific memory CD8(+) T cells via immunization of wild-type (WT) and IFN-gamma-deficient (gamma knockout (GKO)) mice with LM peptide-coated dendritic cells and compared them phenotypically and functionally. Immunization of WT and GKO mice resulted in memory CD8(+) T cells that were similar in number, functional avidity, TCR repertoire use, and memory phenotype. The protective capacity of memory CD8(+) T cells from immunized WT and GKO mice was evaluated after adoptive transfer of equal numbers of WT or GKO cells into naive BALB/c mice followed by LM challenge. The adoptively transferred CD8(+) T cells from GKO donors exhibited a decreased ability to reduce bacterial numbers in the organs of recipient mice when compared with an equivalent number of Ag-matched WT CD8(+) T cells. This deficiency was most evident early (day 3) after infection if a relatively low infectious dose was used; however, transferring fewer memory CD8(+) T cells or increasing the LM challenge dose revealed a more pronounced defect in protective immunity mediated by the CD8(+) T cells from GKO mice. Our studies identified a decrease in Ag-specific target cell lysis in vivo by CD8(+) T cells from GKO mice as the mechanism for the decreased protective immunity after LM challenge. Further studies suggest that the lack of IFN-gamma production by the Ag-specific CD8 T cells themselves diminishes target cell sensitivity to cytolysis, thereby reducing the lytic potency of IFN-gamma-deficient LM-specific memory CD8(+) T cells.  相似文献   

16.
In contrast to infectious (live) vaccines are those based on subunit Ag that are notoriously poor in eliciting protective CD8 T cell responses, presumably because subunit Ags become insufficiently cross-presented by dendritic cells (DCs) and because the latter need to be activated to acquire competence for cross-priming. In this study, we show that CpG-Ag complexes overcome these limitations. OVA covalently linked to CpG-DNA (CpG-OVA complex), once it is efficiently internalized by DCs via DNA receptor-mediated endocytosis, is translocated to lysosomal-associated membrane protein 1 (LAMP-1)-positive endosomal-lysosomal compartments recently shown to display competence for cross-presentation. In parallel, CpG-OVA complex loaded DCs become activated and acquire characteristics of professional APCs. In vivo, a single s.c. dose of CpG-OVA complex (10 mug of protein) induces primary and secondary clonal expansion/contraction of Ag-specific CD8 T cells similar in kinetics to live vaccines; examples including Listeria monocytogenes genetically engineered to produce OVA (LM-OVA) and two viral vector-based OVA vaccines analyzed. Interestingly, CpG-OVA complex induced almost equal percentages of Ag-specific memory CD8 T cells as did infection with LM-OVA. A single dose vaccination with CpG-OVA complex protected mice against lethal doses of LM-OVA. These data underscore that the synergy imparted by CpG-OVA complex-mediated combined triggering of innate and specific immunity might be key to initiate CD8 T cell-based immunoprotection by synthetic vaccines based on subunit Ag.  相似文献   

17.
Interleukin (IL)-17A plays an important role in host defense against a variety of pathogens and may also contribute to the pathogenesis of autoimmune diseases. However, precise identification and quantification of the cells that produce this cytokine in vivo have not been performed. We generated novel IL-17A reporter mice to investigate expression of IL-17A during Klebsiella pneumoniae infection and during experimental autoimmune encephalomyelitis, conditions previously demonstrated to potently induce IL-17A production. In both settings, the majority of IL-17A was produced by non-CD4(+) T cells, particularly γδ T cells, but also invariant NKT cells and other CD4(-)CD3ε(+) cells. As measured in dual-reporter mice, IFN-γ-producing Th1 cells greatly outnumbered IL-17A-producing Th17 cells throughout both challenges. Production of IL-17A by cells from unchallenged mice or by non-T cells under any condition was not evident. Administration of IL-1β and/or IL-23 elicited rapid production of IL-17A by γδ T cells, invariant NKT cells and other CD4(-)CD3ε(+) cells in vivo, demonstrating that these cells are poised for rapid cytokine production and likely comprise the major sources of this cytokine during acute immunologic challenges.  相似文献   

18.
Immunostimulatory sequence (ISS) DNA containing unmethylated CpG dinucleotides stimulate NK and APC to secrete proinflammatory cytokines, including IFN-alphabeta and -gamma, TNF-alpha, and IL-6 and -12, and to express costimulatory surface molecules such as CD40, B7-1, and B7-2. Although ISS DNA has little direct effect on T cells by these criteria, immunization of wild-type mice with ISS DNA and OVA results in Ag-specific CTL and Th1-type T helper activity. This investigation examines the mechanisms by which ISS DNA primes CD8(+) and CD4(+) lymphocyte activities. In this report we demonstrate that ISS DNA regulates the expression of costimulatory molecules and TAP via a novel autocrine or paracrine IFN-alphabeta pathway. Coordinated regulation of B7 costimulation and TAP-dependent cross-presentation results in priming of Ag-specific CD8(+) CTL, whereas CD40, B7, and IL-12 costimulation is required for priming of CD4(+) Th cells by ISS-based vaccines.  相似文献   

19.
Interleukin (IL)-17 is a proinflammatory cytokine which induces differentiation and migration of neutrophils through induction of cytokines and chemokines including granulocyte-colony stimulating factor and CXCL8/IL-8. IL-17-producing CD4(+) T cells (Th17) have pivotal role in pathogenesis of autoimmune diseases. IL-17 is also involved in protective immunity against various infections. IL-17 has important role in induction of neutrophil-mediated protective immune response against extracellular bacterial or fungal pathogens such as Klebsiella pneumoniae and Candida albicans. Importance of IL-17 in protection against intracellular pathogens including Mycobacterium has also been reported. Interestingly, not only CD4(+) T cells but atypical CD4(-)CD8(-) T cells expressing T cell receptor (TCR) gammadelta produce IL-17, and IL-17 producing cells participate in both innate and acquired immune response to infections. Furthermore, neutrophil induction may not be the only mechanism of IL-17-mediated protective immunity. IL-17 seems to participate in host defense through regulation of cell-mediated immunity or induction of antimicrobial peptides such as beta-defensins. In this review, we summarize recent progress on the role of IL-17 in immune response against infections, and discuss possible application of IL-17 in prevention and treatment of infectious diseases.  相似文献   

20.
Compared with wild-type (WT) mice, Listeria monocytogenes (LM)-vaccinated perforin-deficient (PKO) mice have elevated levels of CD8(+) T cell memory, but exhibit reduced levels of protection against virulent LM. In this study, Ag-specific CD8(+) T cells from LM-vaccinated WT and PKO mice were used in adoptive transfer assays to determine the contribution of perforin-dependent cytolysis in protective immunity to LM. Perforin deficiency resulted in an approximately 5-fold reduction in the per-cell protective capacity of Ag-specific memory CD8(+) T cells that was not caused by differences in memory cell quality as measured by CD62L/CD27 expression, TCR repertoire use, functional avidity, differences in expansion of Ag-specific cells upon infection, or maintenance of memory levels over time. However, perforin-deficient CD8(+) T cells exhibited reduced in vivo cytotoxic function compared to WT CD8(+) T cells. Consistent with the existence of perforin-independent effector pathways, double-vaccinated PKO mice were as resistant to challenge with LM as single-vaccinated WT mice. Thus, increasing the number of memory CD8(+) T cells can overcome diminished per-cell protective immunity in the absence of perforin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号