首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extent to which bone marrow (BM) contributes to physiological cell renewal is still controversial. Using the marker human placental alkaline phosphatase (ALPP) which can readily be detected in paraffin and plastic sections by histochemistry or immunohistochemistry, and in ultrathin sections by electron microscopy after pre-embedding staining, we examined the role of endogenous BM in physiological cell renewal by analysing tissues from lethally irradiated wild-type inbred Fischer 344 (F344) rats transplanted (BMT) with unfractionated BM from ALPP-transgenic F344 rats ubiquitously expressing the marker. Histochemical, immunohistochemical and immunoelectron microscopic analysis showed that the proportion of ALPP(+) capillary endothelial cells (EC) profoundly increased from 1 until 6 months after BMT in all organs except brain and adrenal medulla. In contrast, pericytes and EC in large blood vessels were ALPP(-) . Epithelial cells in kidney, liver, pancreas, intestine and brain were recipient-derived at all time-points. Similarly, osteoblasts, chondrocytes, striated muscle and smooth muscle cells were exclusively of recipient origin. The lack of mesenchymal BM-derived cells in peripheral tissues prompted us to examine whether BMT resulted in engraftment of mesenchymal precursors. Four weeks after BMT, all haematopoietic BM cells were of donor origin by flow cytometric analysis, whereas isolation of BM mesenchymal stem cells (MSC) failed to show engraftment of donor MSC. In conclusion, our data show that BM is an important source of physiological renewal of EC in adult rats, but raise doubt whether reconstituted irradiated rats are an apt model for BM-derived regeneration of mesenchymal cells in peripheral tissues.  相似文献   

2.
The UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase, designated GalNAc-T3, exhibits unique functions. Specific acceptor substrates are used by GalNAc-T3 and not by other GalNAc-transferases. The expression pattern of GalNAc-T3 is restricted, and loss of expression is a characteristic feature of poorly differentiated pancreatic tumors. In the present study, a sixth human UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase, designated GalNAc-T6, with high similarity to GalNAc-T3, was characterized. GalNAc-T6 exhibited high sequence similarity to GalNAc-T3 throughout the coding region, in contrast to the limited similarity that exists between homologous glycosyltransferase genes, which is usually restricted to the putative catalytic domain. The genomic organizations of GALNT3 and GALNT6 are identical with the coding regions placed in 10 exons, but the genes are localized differently at 2q31 and 12q13, respectively. Acceptor substrate specificities of GalNAc-T3 and -T6 were similar and different from other GalNAc-transferases. Northern analysis revealed distinct expression patterns, which were confirmed by immunocytology using monoclonal antibodies. In contrast to GalNAc-T3, GalNAc-T6 was expressed in WI38 fibroblast cells, indicating that GalNAc-T6 represents a candidate for synthesis of oncofetal fibronectin. The results demonstrate the existence of genetic redundancy of a polypeptide GalNAc-transferase that does not provide full functional redundancy.  相似文献   

3.
The Apaf-1 protein is essential for cytochrome c-mediated caspase-9 activation in the intrinsic mammalian pathway of apoptosis. Although Apaf-1 is the only known mammalian homologue of the Caenorhabditis elegans CED-4 protein, the deficiency of apaf-1 in cells or in mice results in a limited cell survival phenotype, suggesting that alternative mechanisms of caspase activation and apoptosis exist in mammals. In Drosophila melanogaster, the only Apaf-1/CED-4 homologue, ARK, is required for the activation of the caspase-9/CED-3-like caspase DRONC. Using specific mutants that are deficient for ark function, we demonstrate that ARK is essential for most programmed cell death (PCD) during D. melanogaster development, as well as for radiation-induced apoptosis. ark mutant embryos have extra cells, and tissues such as brain lobes and wing discs are enlarged. These tissues from ark mutant larvae lack detectable PCD. During metamorphosis, larval salivary gland removal was severely delayed in ark mutants. However, PCD occurred normally in the larval midgut, suggesting that ARK-independent cell death pathways also exist in D. melanogaster.  相似文献   

4.
5.
Y Tsukamoto  J Kato    H Ikeda 《Nucleic acids research》1996,24(11):2067-2072
Hdf1 is the yeast homologue of the mammalian 70 kDa subunit of Ku-protein, which has DNA end-binding activity and is involved in DNA double-strand break repair and V(D)J recombination. To examine whether Hdf1 is involved in illegitimate recombination, we have measured the rate of deletion mutation caused by illegitimate recombination on a plasmid in an hdf1 disruptant. The hdf1 mutation reduced the rate of deletion formation by 20-fold, while it did not affect mitotic and meiotic homologous recombinations between two heteroalleles or homologous recombination between direct repeats. Hence Hdf1 participates in illegitimate recombination, but not in homologous recombination, in contrast to Rad52, Rad50, Mre11 and Xrs2, which are involved in both homologous and illegitimate recombination. The illegitimate recombination in the hdf1 disruptant took place between recombination sites that shared short regions of homology (1-4 bp), as was observed in the wild-type. Based on the DNA end-binding activity of Hdf1, we discuss models in which Hdf1 plays an important role in the late step of illegitimate recombination.  相似文献   

6.
Galectin-3 (gal-3) is a β-galactoside binding protein present in multivalent complexes with an extracellular matrix and with cell surface glycoconjugates. In this context, it can deliver a variety of intracellular signals to modulate cell activation, differentiation and survival. In the hematopoietic system, it was demonstrated that gal-3 is expressed in myeloid cells and surrounding stromal cells. Furthermore, exogenous and surface gal-3 drive the proliferation of myeloblasts in a granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent manner. Here, we investigated whether gal-3 regulates the formation of myeloid bone marrow compartments by studying galectin-3(-/-) mice (gal-3(-/-)) in the C57BL/6 background. The bone marrow histology of gal-3(-/-) mice was significantly modified and the myeloid compartments drastically disturbed, in comparison with wild-type (WT) animals. In the absence of gal-3, we found reduced cell density and diaphyseal disorders containing increased trabecular projections into the marrow cavity. Moreover, myeloid cells presented limited capacity to differentiate into mature myeloid cell populations in gal-3(-/-) mice and the number of hematopoietic multipotent progenitors was increased relative to WT animals. In addition, bone marrow stromal cells of these mice had reduced levels of GM-CSF gene expression. Taken together, our data suggest that gal-3 interferes with hematopoiesis, controlling both precursors and stromal cells and favors terminal differentiation of myeloid progenitors rather than proliferation.  相似文献   

7.
The heterotrimeric factor e/aIF2 plays a central role in eukaryotic/archaeal initiation of translation. By delivering the initiator methionyl-tRNA to the ribosome, e/aIF2 ensures specificity of initiation codon selection. The three subunits of aIF2 from the hyperthermophilic archaeon Pyrococcus abyssi could be overproduced in Escherichia coli. The beta and gamma subunits each contain a tightly bound zinc. The large gamma subunit is shown to form the structural core for trimer assembly. The crystal structures of aIF2gamma, free or complexed to GDP-Mg(2+) or GDPNP-Mg(2+), were resolved at resolutions better than 2 A. aIF2gamma displays marked similarities to elongation factors. A distinctive feature of e/aIF2gamma is a subdomain containing a zinc-binding knuckle. Examination of the nucleotide-complexed aIF2gamma structures suggests mechanisms of action and tRNA binding properties similar to those of an elongation factor. Implications for the mechanism of translation initiation in both eukarya and archaea are discussed. In particular, positioning of the initiator tRNA in the ribosomal A site during the search for the initiation codon is envisaged.  相似文献   

8.
The possible role of nitric oxide on the exercise-induced changes in bleomycin-detectable iron (BDI) in the liver, spleen, bone marrow cells and heart was investigated. Female Sprague—Dawley rats were randomly assigned to four groups: S1 (Sedentary), S2 (Sedentary + L-NAME [N-nitro-L-arginine methyl ester]), E1 (Exercise) and E2 (Exercise + L-NAME). Animals in the E1 and E2 swam for 2 h/day for 3 months. L-NAME in the drinking water (1 mg/ml) was administrated to rats in the S2 and E2 groups for the same period. At the end of the 3rd month, nitrite and nitrate (NOx), BDI and non-heme iron (NHI) contents in the liver, spleen, bone marrow cells and heart were measured. The ratio of BDI/NHI was calculated. The exercise induced a significant increase in NOx and BDI contents and/or BDI/NHI ratio in the spleen, bone morrow cells and heart. Treatment with L-NAME, an inhibitor of NOS, led to a significant decrease in NOx and an increase in BDI levels and BDI/NHI ratios in these tissues. The correlative analysis showed that there is significantly positive correlation between NOx levels and BDI contents and/or BDI/NHI ratios in the spleen, bone marrow cells and heart. These results suggest that the increased nitric oxide might be one of the reasons leading to the increased BDI levels in these tissues in the exercised rats. In contrast to the above tissues, in the liver, exercise led to a significant decrease rather than increase in BDI levels and BDI/NHI ratios with a significant increase in NOx contents. Treatment with L-NAME led to a significant increase in BDI levels and BDI/NHI ratios and a decrease in NOx contents in the tissue. These findings plus the results reported by others imply that nitric oxide might have an inhibitory effect on BDI in the liver.  相似文献   

9.
Ustinova I  Krienitz L  Huss VA 《Protist》2000,151(3):253-262
The unicellular heterotrophic protist Hyaloraphidium is classified with a family of green algae, the Ankistrodesmaceae. The only species that exists in pure culture and that is available for taxonomic studies is H. curvatum. Comparative 18S ribosomal RNA sequence analyses showed that H. curvatum belongs to the fungi rather than to the algae. Within the fungi, H. curvatum preferentially clustered with Chytridiomycetes. Unlike Chytridiomycetes, H. curvatum propagates by autosporulation, and the presence of flagella has never been reported. Transmission electron microscopy indicated that H. curvatum in some respects resembles Chytridiomycetes, but no elements of a flagellar apparatus were detected. The habitus of H. curvatum is unlike that of other fungi except the trichomycete Amoebidium parasiticum. The cell wall sugar composition of H. curvatum was unique, but to some extent resembled that of A. parasiticum. However, H. curvatum and A. parasiticum are not closely related to each other according to 18S rRNA sequence data. Moreover, A. parasiticum clustered with protistan animals, the Mesomycetozoa (DRIPs). Combined molecular, ultrastructural and chemical data do not allow assignment of H. curvatum to any recognized clade of fungi. This suggests that H. curvatum may represent an independent evolutionary lineage within the fungi.  相似文献   

10.
Alterations in iron metabolism or oxidative damage in response to hypoxic incidents have been examined following re-oxygenation of the hypoxic tissue. To understand the consequences of decreased tissue oxygen on iron load, metal-catalyzed redox activity and oxidative modifications in isolation from re-oxygenation, the present study exposed mice to either normoxia, or mild hypoxia (380 Torr; approximately 10% normobaric oxygen) where the tissue was not allowed to re-oxygenate prior to examination. Brain, liver and skeletal muscle were examined for Fe3+ load, metal-catalyzed redox activity and oxidative modifications to proteins (N(epsilon)-(carboxymethyl)lysine), lipids (4-hydroxynonenal pyrrole) and nucleic acids (8-hydroxyguanosine). Hypoxia induced a 43% increase in the iron content of the liver (P < 0.001) as determined by ICP-MS and a 3.8-fold increase in Fe3+ load (P < 0.001) as determined by Perl's stain. There was a corresponding 2-fold increase in metal-catalyzed redox activity (P < 0.01) in the liver, but no change in the expression of oxidative markers. In contrast, non-significant increases in Fe3+ and metal-catalyzed redox activity were observed in the cerebral cortex, and molecular and granular layers of the hippocampus and cerebellum. Interestingly, hypoxia significantly decreased oxidative modifications to proteins and lipids, but not nucleic acids in most brain regions examined. In addition, hypoxia did not alter the Fe content of skeletal muscle, or the contents of Zn, Cu, Ni or Mn in liver, skeletal muscle, cerebral cortex or hippocampus. Together, these results indicate that there is a tighter regulation of iron metabolism in the brain than the liver, which limits the redistribution of Fe3+ following hypoxia.  相似文献   

11.
Abstract

Alterations in iron metabolism or oxidative damage in response to hypoxic incidents have been examined following re-oxygenation of the hypoxic tissue. To understand the consequences of decreased tissue oxygen on iron load, metal-catalyzed redox activity and oxidative modifications in isolation from re-oxygenation, the present study exposed mice to either normoxia, or mild hypoxia (380 Torr; ~10% normobaric oxygen) where the tissue was not allowed to re-oxygenate prior to examination. Brain, liver and skeletal muscle were examined for Fe3+ load, metal-catalyzed redox activity and oxidative modifications to proteins (N?-(carboxymethyl)lysine), lipids (4-hydroxynonenal pyrrole) and nucleic acids (8-hydroxyguanosine). Hypoxia induced a 43% increase in the iron content of the liver (P < 0.001) as determined by ICP-MS and a 3.8-fold increase in Fe3+ load (P < 0.001) as determined by Perl's stain. There was a corresponding 2-fold increase in metal-catalyzed redox activity (P < 0.01) in the liver, but no change in the expression of oxidative markers. In contrast, non-significant increases in Fe3+ and metal-catalyzed redox activity were observed in the cerebral cortex, and molecular and granular layers of the hippocampus and cerebellum. Interestingly, hypoxia significantly decreased oxidative modifications to proteins and lipids, but not nucleic acids in most brain regions examined. In addition, hypoxia did not alter the Fe content of skeletal muscle, or the contents of Zn, Cu, Ni or Mn in liver, skeletal muscle, cerebral cortex or hippocampus. Together, these results indicate that there is a tighter regulation of iron metabolism in the brain than the liver, which limits the redistribution of Fe3+ following hypoxia.  相似文献   

12.
13.
Cultures of mast cells of more than 95% purity were grown from bone marrow of BALB/c mice, and examined with various morphological methods. The presence of elongated, reticular cells was documented in the adherent layer on day 7 of the culture. The committed stem cells as well as immature bone marrow-derived mast cells (BMMCs) growing in clusters over the reticular cells were observed. After 14 days of cultivation BMMC harvested from the medium showed extensive plasma membrane ridges and numerous immature granules in their cytoplasm. These BMMCs increased their histamine to 0.7-1.1 pg/cell as compared to 0.1-0.2 pg/cell on the day 7. In the adherent layer BMMCs were seen in close apposition to the reticular cells. Their microvilli interdigitated with one another, forming end-to-end contracts. Our findings provide the evidence that for differentiation and proliferation of BMMCs in vitro close contacts with reticular cells in the adherent layer are necessary.  相似文献   

14.
15.
Retrorsine (RTS) and monocrotaline (MCT) cause severe toxicities via P450-mediated metabolic activation. The screening of mechanism-based inhibitors showed RTS inactivated 3A4 in the presence of NADPH. Unlike RTS, MCT failed to inhibit P450 3A4 and other enzymes tested. Further studies showed the loss of P450 3A4 activity occurred in a time- and concentration-dependent way, which was not recovered after dialysis. Dextromethorphan, a P450 3A4 substrate, protected the enzyme from the inactivation. Exogenous nucleophile glutathione (GSH) and reactive oxygen species scavengers catalase and superoxide dismutase did not protect P450 3A4 from the inactivation. GSH trapping experiments showed both P450 3A4 and 2C19 converted RTS and MCT to the corresponding electrophilic metabolites which could be trapped by GSH to form 7-GSH-DHP conjugate. We conclude that RTS and MCT are metabolically activated by P450 3A4 and 2C19, and that RTS, but not MCT, is a mechanism-based inactivator of P450 3A4.  相似文献   

16.
Analyses of rearranged Ig H chain V region genes of bone marrow pre-B cells demonstrate extensive sequence diversity, particularly within the third hypervariable region (HCDR3). This diversity is constrained, however, through preferential utilization of certain D gene segments and possibly VH gene segments and a preponderance of productive rearrangements, primarily those expressing D gene segments in a preferred reading frame. The predominance of productively rearranged V genes with D regions translated in a preferred frame, is, at least in part, the consequence of selective clonal expansion encompassing at least five to six divisions subsequent to VH-D-JH rearrangement. Selection for clonal expansion appears to be dependent on recognition of the nascent H chain product of certain productively rearranged genes.  相似文献   

17.
18.
We have established a bone marrow culture system in which mature natural killer (NK) cells can be generated from inactive precursors by interleukin 2. Recombinant interleukin 3 (IL 3) almost completely blocked the induction of NK cells in this culture system as judged by cytotoxic activity, as well as appearance of cells with NK phenotype. The dose-response curve for inhibition of the generation of NK activity with IL 3 parallelled the growth promoting activity on the strictly IL 3-dependent cell line L/B. The effect of IL 3 was selective for the precursor stage of the NK cell, because mature NK cells were not affected by culture with IL 3 for the same period of time. Moreover, the effect of IL 3 was confined to the first 24 hr of culture, indicating an effect on an early stage of NK cell differentiation. IL 3 did not increase the small normally occurring NK-sensitive population in bone marrow, and did not affect the activity of a variant cytotoxic cell with specificity for adherent target cells, the natural cytotoxic cell. Concomitantly with downregulation of NK cell generation, IL 3 induced strong proliferation in the bone marrow cultures and an increase in the percentage of cells expressing the T cell marker Thy-1. A model for regulation of NK cells based on competition of growth factors for target cells with a common progenitor is discussed.  相似文献   

19.
The formation of B lymphocytes is abnormal in autoimmune NZB and (NZB x NZW)F1 mice. With age, the proportion of sIg- Ly-5(220)+ pre-B cells and less mature B cell progenitors in the bone marrow progressively declines, reaching only approximately one-third of normal levels in 20-wk-old NZ mice. To determine the mechanisms responsible for the deficiency of NZ B lineage precursors, the mitotic activity of sIg- Ly-5(220)+ bone marrow cells in vivo was determined in NZ and conventional inbred mice as a function of age. The proportion of sIg- Ly-5(220)+ B cell precursors in (S + G2/M) stages of the cell cycle steadily decreased with age in NZ autoimmune mice. Furthermore, upon metaphase arrest, the rate of entry of sIg- Ly-5(220)+ bone marrow cells into G2/M also decreased with age in NZ mice. Therefore, the mitotic activity of sIg- Ly-5(220)+ B cell precursors is substantially decreased in NZ mice greater than or equal to 20 wk of age. The capacity of the bone marrow stromal microenvironment of NZ mice to support B lineage precursor growth was tested in two ways: 1) the capacity of preformed NZ bone marrow stroma to support B lineage cell growth in long term bone marrow cell culture under lymphopoietic conditions was assessed and 2) the capacity of NZ bone marrow B lineage precursors to expand in vivo after sublethal (200 rad) whole body irradiation was determined. Stroma derived from adult NZ mice supported the growth and development of B lineage lymphocytes in long term bone marrow cell culture to a greater extent than did age-matched conventional murine stroma. Furthermore, sublethal irradiation of older adult NZ mice resulted in some expansion of bone marrow sIg- Ly-5(220)+ B cell precursors in vivo. Therefore, the deficiency of B cell progenitors in the bone marrow of older NZ autoimmune mice is associated with diminished mitotic activity. However, this does not result from defects in the capacity of NZ bone marrow stroma to permit B lineage cell expansion as determined by both in vitro and in vivo experiments. In the absence of a detectable stromal cell defect, it is possible that an active inhibitory process within the bone marrow influences the mitotic activity of B cell precursors in NZ mice.  相似文献   

20.
During starvation-induced autophagy in mammals, autophagosomes form and fuse with lysosomes, leading to the degradation of the intra-autophagosomal contents by lysosomal proteases. During the formation of autophagosomes, LC3 is lipidated, and this LC3-phospholipid conjugate (LC3-II) is localized on autophagosomes and autolysosomes. While intra-autophagosomal LC3-II may be degraded by lysosomal hydrolases, recent studies have regarded LC3-II accumulation as marker of autophagy. The effect of lysosomal turnover of endogenous LC3-II in this process, however, has not been considered. We therefore investigated the lysosomal turnover of endogenous LC3-II during starvation-induced autophagy using E64d and pepstatin A, which inhibit lysosomal proteases, including cathepsins B, D and L. We found that endogenous LC3-II significantly accumulated in the presence of E64d and pepstatin A under starvation conditions, increasing about 3.5 fold in HEK293 cells and about 6.7 fold in HeLa cells compared with that in their absence, whereas the amount of LC3-II in their absence is cell-line dependent. Morphological analyses indicated that endogenous LC3-positive puncta and autolysosomes increased in HeLa cells under starvation conditions in the presence of these inhibitors. These results indicate that endogenous LC3-II is considerably degraded by lysosomal hydrolases after formation of autolysosomes, and suggest that lysosomal turnover, not a transient amount, of this protein reflects starvation-induced autophagic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号