首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The COOH-terminal tail of mammalian neurofilament heavy subunit (NF-H), the largest neurofilament subunit, contains 44-51 lysine-serine-proline repeats that are nearly stoichiometrically phosphorylated after assembly into neurofilaments in axons. Phosphorylation of these repeats has been implicated in promotion of radial growth of axons, control of nearest neighbor distances between neurofilaments or from neurofilaments to other structural components in axons, and as a determinant of slow axonal transport. These roles have now been tested through analysis of mice in which the NF-H gene was replaced by one deleted in the NF-H tail. Loss of the NF-H tail and all of its phosphorylation sites does not affect the number of neurofilaments, alter the ratios of the three neurofilament subunits, or affect the number of microtubules in axons. Additionally, it does not reduce interfilament spacing of most neurofilaments, the speed of action potential propagation, or mature cross-sectional areas of large motor or sensory axons, although its absence slows the speed of acquisition of normal diameters. Most surprisingly, at least in optic nerve axons, loss of the NF-H tail does not affect the rate of transport of neurofilament subunits.  相似文献   

2.
《The Journal of cell biology》1994,126(4):1031-1046
The high molecular weight subunits of neurofilaments, NF-H and NF-M, have distinctively long carboxyl-terminal domains that become highly phosphorylated after newly formed neurofilaments enter the axon. We have investigated the functions of this process in normal, unperturbed retinal ganglion cell neurons of mature mice. Using in vivo pulse labeling with [35S]methionine or [32P]orthophosphate and immunocytochemistry with monoclonal antibodies to phosphorylation- dependent neurofilament epitopes, we showed that NF-H and NF-M subunits of transported neurofilaments begin to attain a mature state of phosphorylation within a discrete, very proximal region along optic axons starting 150 microns from the eye. Ultrastructural morphometry of 1,700-2,500 optic axons at each of seven levels proximal or distal to this transition zone demonstrated a threefold expansion of axon caliber at the 150-microns level, which then remained constant distally. The numbers of neurofilaments nearly doubled between the 100- and 150- microns level and further increased a total of threefold by the 1,200- microns level. Microtubule numbers rose only 30-35%. The minimum spacing between neurofilaments also nearly doubled and the average spacing increased from 30 nm to 55 nm. These results show that carboxyl- terminal phosphorylation expands axon caliber by initiating the local accumulation of neurofilaments within axons as well as by increasing the obligatory lateral spacing between neurofilaments. Myelination, which also began at the 150-microns level, may be an important influence on these events because no local neurofilament accumulation or caliber expansion occurred along unmyelinated optic axons. These findings provide evidence that carboxyl-terminal phosphorylation triggers the radial extension of neurofilament sidearms and is a key regulatory influence on neurofilament transport and on the local formation of a stationary but dynamic axonal cytoskeletal network.  相似文献   

3.
《The Journal of cell biology》1988,107(6):2689-2701
The 200-kD subunit of neurofilaments (NF-H) functions as a cross-bridge between neurofilaments and the neuronal cytoskeleton. In this study, four phosphorylated NF-H variants were identified as major constituents of axons from a single neuron type, the retinal ganglion cell, and were shown to have characteristics with different functional implications. We resolved four major Coomassie Blue-stained proteins with apparent molecular masses of 197, 200, 205, and 210 kD on high resolution one- dimensional SDS-polyacrylamide gels of mouse optic axons (optic nerve and optic tract). Proteins with the same electrophoretic mobilities were radiolabeled within retinal ganglion cells in vivo after injecting mice intravitreally with [35S]methionine or [3H]proline. Extraction of the radiolabeled protein fraction with 1% Triton X-100 distinguished four insoluble polypeptides (P197, P200, P205, P210) with expected characteristics of NF-H from two soluble neuronal polypeptides (S197, S200) with few properties of neurofilament proteins. The four Triton- insoluble polypeptides displayed greater than 90% structural homology by two-dimensional alpha-chymotryptic iodopeptide map analysis and cross-reacted with four different monoclonal and polyclonal antibodies to NF-H by immunoblot analysis. Each of these four polypeptides advanced along axons primarily in the Group V (SCa) phase of axoplasmic transport. By contrast, the two Triton-soluble polypeptides displayed only a minor degree of alpha-chymotryptic peptide homology with the Triton-insoluble NF-H forms, did not cross-react with NF-H antibodies, and moved primarily in the Group IV (SCb) wave of axoplasmic transport. The four NF-H variants were generated by phosphorylation of a single polypeptide. Each of these polypeptides incorporated 32P when retinal ganglion cells were radiolabeled in vivo with [32P]orthophosphate and each cross-reacted with monoclonal antibodies specifically directed against phosphorylated epitopes on NF-H. When dephosphorylated in vitro with alkaline phosphatase, the four variants disappeared, giving rise to a single polypeptide with the same apparent molecular mass (160 kD) as newly synthesized, unmodified NF-H. The NF-H variants distributed differently along optic axons. P197 predominated at proximal axonal levels; P200 displayed a relatively uniform distribution; and P205 and P210 became increasingly prominent at more distal axonal levels, paralleling the distribution of the stationary neurofilament network.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Axonal transport of neurofilaments (NFs) has long been considered to be regulated by phosphorylation. We present evidence that in optic axons of normal mice, the rate of NF axonal transport is inversely correlated with the NF phosphorylation state. In addition to 200 kDa NF-H and 145 kDa NF-M, axonal cytoskeletons from CNS contained a range of phospho-variants of NF-H migrating between 160-200 kDa, and of NF-M migrating at 97-145 kDa. While 160 kDa phospho-variants of NF-H have been well characterized, we confirmed the identity of the previously-described 97 kDa species as a hypophospho-variant of NF-M since (1) pulse-chase metabolic labeling confirmed the 97 kDa species to be a new synthesis product that was converted by phosphorylation over time into a form migrating at 145 kDa, (2) the 97 kDa protein reacted with multiple NF-M antibodies, including one specific for hypophosphorylated NF-M, and (3) dephosphorylation converted NF-M isoforms to 97 kDa. Autoradiographic analyses following metabolic radiolabeling demonstrated that hypophosphorylated NF-H and NF-M isoforms underwent substantially more rapid transport in situ than did extensively phosphorylated isoforms, while NF-H subunits bearing a developmentally delayed C-terminal phospho-epitope transported at a rate slower than that of total 200 kDa NF-H. Differential transport of phospho-variants also highlights that these variants are not homogeneously distributed among NFs, but are segregated to some extent among distinct, although probably overlapping, NF populations, indicating that axonal NFs are not homogeneous with respect to phosphorylation state.  相似文献   

5.
《The Journal of cell biology》1995,130(6):1413-1422
The carboxy-terminal tail domains of neurofilament subunits neurofilament NF-M and NF-H have been postulated to be responsible for the modulation of axonal caliber. To test how subunit composition affects caliber, transgenic mice were generated to increase axonal NF- M. Total neurofilament subunit content in motor and sensory axons remained essentially unchanged, but increases in NF-M were offset by proportionate decreases in both NF-H and axonal cross-sectional area. Increase in NF-M did not affect the level of phosphorylation of NF-H. This indicates that (a) in vivo NF-H and NF-M compete either for coassembly with a limiting amount of NF-L or as substrates for axonal transport, and (b) NF-H abundance is a primary determinant of axonal caliber. Despite inhibition of radial growth, increase in NF-M and reduction in axonal NF-H did not affect nearest neighbor spacing between neurofilaments, indicating that cross-bridging between nearest neighbors does not play a crucial role in radial growth. Increase in NF- M did not result in an overt phenotype or neuronal loss, although filamentous swellings in perikarya and proximal axons of motor neurons were frequently found.  相似文献   

6.
Newly synthesized neurofilament proteins become highly phosphorylated within axons. Within 2 days after intravitreously injecting normal adult mice with [32P]orthophosphate, we observed that neurofilaments along the entire length of optic axons were radiolabeled by a soluble32P-carrier that was axonally transported faster than neurofilaments.32P-incorporation into neurofilament proteins synthesized at the time of injection was comparatively low and minimally influenced the labeling pattern along axons.32P-incorporation into axonal neurofilaments was considerably higher in the middle region of the optic axons. This characteristic non-uniform distribution of radiolabel remained nearly unchanged for at least 22 days. During this interval, less than 10% of the total32P-labeled neurofilaments redistributed from the optic nerve to the optic tract. By contrast, newly synthesized neurofilaments were selectively pulse-labeled in ganglion cell bodies by intravitreous injection of [35S]methionine and about 60% of this pool translocated by slow axoplasmic transport to the optic tract during the same time interval. These findings indicate that the steady-state or resident pool of neurofilaments in axons is not identical to the newly synthesized neurofilament pool, the major portion of which moves at the slowest rate of axoplasmic transport. Taken together with earlier studies, these results support the idea that, depending in part on their phosphorylation state, transported neurofilaments can interact for short or very long periods with a stationary but dynamic neurofilament lattice in axons.Special issue dedicated to Dr. Sidney Ochs.  相似文献   

7.
Kesavapany S  Li BS  Pant HC 《Neuro-Signals》2003,12(4-5):252-264
Neurofilaments are neuron-specific intermediate filaments. They are classed into three groups according to their molecular masses: neurofilament heavy, middle and light chains (NF-H, NF-M and NF-L). Neurofilaments assemble and form through the association of their central alpha-helical coiled-coil rod domains. NF-H and NF-M are distinct from NF-L as they contain a carboxyl-terminal tail domain, which appears to form connections with adjacent structures and other neurofilaments. Together with other axonal components such as microtubules, they form the dynamic axonal cytoskeleton. They maintain and regulate neuronal cytoskeletal plasticity through the regulation of neurite outgrowth, axonal caliber and axonal transport. Neurofilaments contain KSP repeats that are consensus motifs for the proline-directed kinases and are extensively phosphorylated in vivo, and their functions are thought to be regulated through their phosphorylation. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed kinase, whose activity is restricted to the neuron through the neuronal-specific distribution of its activators p35 and p39. Cdk5 is the only kinase that affects the electrophoretic mobility of human NF-H and is thought to be the major neurofilament kinase. Cdk5 is involved in crosstalk with other signal transduction pathways such as the mitogen-activated protein kinase and myelin-associated glycoprotein pathways to influence the phosphorylation of neurofilaments and other cytoskeletal proteins. Both the hyperactivation of Cdk5 activity and subsequent hyperphosphorylation of neurofilaments and the microtubule-associated protein tau have been implicated in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease and amyotrophic lateral sclerosis. Here we review the functions of neurofilaments and the significance of Cdk5 phosphorylation of neurofilaments.  相似文献   

8.
To examine the mechanism through which neurofilaments regulate the caliber of myelinated axons and to test how aberrant accumulations of neurofilaments cause motor neuron disease, mice have been constructed that express wild-type mouse NF-H up to 4.5 times the normal level. Small increases in NF-H expression lead to increased total neurofilament content and larger myelinated axons, whereas larger increases in NF-H decrease total neurofilament content and strongly inhibit radial growth. Increasing NF-H expression selectively slow neurofilament transport into and along axons, resulting in severe perikaryal accumulation of neurofilaments and proximal axonal swellings in motor neurons. Unlike the situation in transgenic mice expressing modest levels of human NF-H (Cote, F., J.F. Collard, and J.P. Julien. 1993. Cell. 73:35-46), even 4.5 times the normal level of wild-type mouse NF-H does not result in any overt phenotype or enhanced motor neuron degeneration or loss. Rather, motor neurons are extraordinarily tolerant of wild-type murine NF-H, whereas wild-type human NF-H, which differs from the mouse homolog at > 160 residue positions, mediates motor neuron disease in mice by acting as an aberrant, mutant subunit.  相似文献   

9.
Jafari  S. S  Maxwell  W. L  Neilson  M  Graham  D. I 《Brain Cell Biology》1997,26(4):201-221
In animal models of human diffuse axonal injury, axonal swellings leading to secondary axotomy occur between 2 and 6 h after injury. But, analysis of cytoskeletal changes associated with secondary axotomy has not been undertaken. We have carried out a quantitative analysis of cytoskeletal changes in a model of diffuse axonal injury 4 h after stretch-injury to adult guinea-pig optic nerves. The major site of axonal damage was the middle portion of the nerve. There was a statistically significant increase in the proportion of small axons with a diameter of 0.5 μm and smaller in which there was compaction of neurofilaments. Axons with a diameter greater than 2.0 μm demonstrated an increased spacing between cytoskeletal elements throughout the length of the nerve. However, in the middle segment of the nerve these larger axons demonstrated two different types of response. Either, where periaxonal spaces occurred, there was a reduction in axonal calibre, compaction of neurofilaments but no change in their number, and a loss of microtubules. Or, where intramyelinic spaces occurred there was an increased spacing between neurofilaments and microtubules with a significant loss in the number of both. Longitudinal sections showed foci of compaction of neurofilaments interspersed between regions where axonal structure was apparently normal. Neurofilament compaction was correlated with disruption of the axolemma at these foci present some hours after injury. We suggest that the time course of these axonal cytoskeletal changes after stretch-injury to central axons is shorter than those changes documented to occur during Wallerian degeneration.  相似文献   

10.
A reduction in neurofilament (NF) protein synthesis and changes in their phosphorylation state are observed during nerve regeneration. To investigate how such metabolic changes are involved in the reorganization of the axonal cytoskeleton, we studied the injury-induced changes in the solubility and axonal transport of NF proteins as well as their phosphorylation states in the rat sciatic nerve. In the control nerve, 15-25% of high-molecular-mass NF subunit (NF-H) was recovered in the 1% Triton-soluble fraction when fractionated in the presence of phosphatase inhibitors. After a complete loss of NF proteins distal to the injury site (70-75 mm from the spinal cord) 1 week after injury, NF-H detected in the regenerating sprouts at 2 weeks or later exhibited higher solubility (>50%) and lower C-terminal phosphorylation level than NF-H in the control nerve. Solubility increase was also apparent with L-[35S]methionine-labeled NF-H that was in transit in the proximal axon at the time of injury. The low-molecular-mass subunit remained in the insoluble fraction in both the normal and the regenerating nerves, indicating that selective solubilization of NF-H rather than total filament disassembly occurs during regeneration.  相似文献   

11.
12.
Axonal maturation in situ is accompanied by the transition of neurofilaments (NFs) comprised of only NF-M and NF-L to those also containing NF-H. Since NF-H participates in interactions of NFs with each other and with other cytoskeletal constituents, its appearance represents a critical event in the stabilization of axons that accompanies their maturation. Whether this transition is effected by replacement of "doublet" NFs with "triplet" NFs, or by incorporation of NF-H into existing doublet NFs is unclear. To address this issue, we examined the distribution of NF subunit immunoreactivity within axonal cytoskeletons of differentiated NB2a/d1 cell and DRG neurons between days 3-7 of outgrowth. Endogenous immunoreactivity either declined in a proximal-distal gradient or was relatively uniform along axons. This distribution was paralleled by microinjected biotinylated NF-L. By contrast, biotinylated NF-H displayed a bipolar distribution, with immunoreactivity concentrated within the proximal- and distal-most axonal regions. Proximal biotinylated NF-H accumulation paralleled that of endogenous NF immunoreactivity; however, distal-most biotinylated NF-H accumulation dramatically exceeded that of endogenous NFs and microinjected NF-L. This phenomenon was not due to co-polymerization of biotin-H with vimentin or alpha-internexin. This phenomenon declined with continued time in culture. These data suggest that NF-H can incorporate into existing cytoskeletal structures, and therefore suggest that this mechanism accounts for at least a portion of the accumulation of triplet NFs during axonal maturation. Selective NF-H accumulation into existing cytoskeletal structures within the distal-most region may provide de novo cytoskeletal stability for continued axon extension and/or stabilization.  相似文献   

13.
S M de Waegh  V M Lee  S T Brady 《Cell》1992,68(3):451-463
Studies in Trembler and control mice demonstrated that myelinating Schwann cells exert a profound influence on axons. Extensive contacts between myelin and axons have been considered structural. However, demyelination decreases neurofilament phosphorylation, slow axonal transport, and axonal diameter, as well as significantly increasing neurofilament density. In control sciatic nerves with grafted Trembler nerve segments, these changes were spatially restricted: they were confined to axon segments without normal myelination. Adjacent regions of the same axons had normal diameters, neurofilament phosphorylation, cytoskeletal organization, and axonal transport rates. Close intercellular contacts between myelinating Schwann cells and axons modulate a kinase-phosphatase system acting on neurofilaments and possibly other substrates. Myelination by Schwann cells sculpts the axon-altering functional architecture, electrical properties, and neuronal morphologies.  相似文献   

14.
Distinctly Phosphorylated Neurofilaments in Different Classes of Neurons   总被引:1,自引:0,他引:1  
Abstract: Recent immunohistochemical experiments revealed that specific anti-neurofilament monoclonal antibodies yield distinct patterns in different types of neurons. This led to the suggestion that neurofilaments are a family of heterogeneous molecules whose occurrence and distribution are a function of cell type. In the present study we examined the hypothesis that this heterogeneity is due to differences in the extent of phosphorylation of neurofilament proteins in distinct types of neurons. In view of the large number of potential phosphorylation sites on the heavy neurofilament protein (NF-H), we focused on this protein and examined its extent of phosphorylation in different types of neurons. This was performed using neurofilaments isolated from axons of the cholinergic bovine ventral root motor neurons and of the chemically heterogeneous bovine dorsal root neurons. Two-dimensional gel electrophoresis revealed that the isoelectric point of ventral root NF-H (pl 5.10) was ∼0.2 pl units more acidic than that of dorsal root NH-F. This difference was abolished by treating the neurofilaments with alkaline phosphatase, suggesting that the excess negative charge of ventral root NF-H is due to increased levels of phosphorylation. Amino acid analysis confirmed that the phosphoserine content of ventral root NF-H (27.2 ± 2.5% of the serines) is markedly higher than that of dorsal root NF-H (15.5 ± 6.2% of the serines). These findings provide a novel system for studying the biochemistry and function of distinctly phosphorylated neurofilaments in different types of neurons.  相似文献   

15.
The phosphorylated carboxyl-terminal "tail" domains of the neurofilament (NF) subunits, NF heavy (NF-H) and NF medium (NF-M) subunits, have been proposed to regulate axon radial growth, neurofilament spacing, and neurofilament transport rate, but direct in vivo evidence is lacking. Because deletion of the tail domain of NF-H did not alter these axonal properties (Rao, M.V., M.L. Garcia, Y. Miyazaki, T. Gotow, A. Yuan, S. Mattina, C.M. Ward, N.S. Calcutt, Y. Uchiyama, R.A. Nixon, and D.W. Cleveland. 2002. J. Cell Biol. 158:681-693), we investigated possible functions of the NF-M tail domain by constructing NF-M tail-deleted (NF-MtailDelta) mutant mice using an embryonic stem cell-mediated "gene knockin" approach that preserves normal ratios of the three neurofilament subunits. Mutant NF-MtailDelta mice exhibited severely inhibited radial growth of both motor and sensory axons. Caliber reduction was accompanied by reduced spacing between neurofilaments and loss of long cross-bridges with no change in neurofilament protein content. These observations define distinctive functions of the NF-M tail in regulating axon caliber by modulating the organization of the neurofilament network within axons. Surprisingly, the average rate of axonal transport of neurofilaments was unaltered despite these substantial effects on axon morphology. These results demonstrate that NF-M tail-mediated interactions of neurofilaments, independent of NF transport rate, are critical determinants of the size and cytoskeletal architecture of axons, and are mediated, in part, by the highly phosphorylated tail domain of NF-M.  相似文献   

16.
Neurofilaments are central determinants of the diameter of myelinated axons. It is less clear whether neurofilaments serve other functional roles such as maintaining the structural integrity of axons over time. Here we show that an age-dependent axonal atrophy develops in the lumbar ventral roots of mice with a null mutation in the mid-sized neurofilament subunit (NF-M) but not in animals with a null mutation in the heavy neurofilament subunit (NF-H). Mice with null mutations in both genes develop atrophy in ventral and dorsal roots as well as a hind limb paralysis with aging. The atrophic process is not accompanied by significant axonal loss or anterior horn cell pathology. In the NF-M-null mutant atrophic ventral root, axons show an age-related depletion of neurofilaments and an increased ratio of microtubules/neurofilaments. By contrast, the preserved dorsal root axons of NF-M-null mutant animals do not show a similar depletion of neurofilaments. Thus, the lack of an NF-M subunit renders some axons selectively vulnerable to an age-dependent atrophic process. These studies argue that neurofilaments are necessary for the structural maintenance of some populations of axons during aging and that the NF-M subunit is especially critical.  相似文献   

17.
Calcium-Mediated Degeneration of the Axonal Cytoskeleton in the Ola Mouse   总被引:1,自引:0,他引:1  
Abstract: The C57BL/Ola (Ola) mouse is a mutant substrain in which transected axons undergo very slow Wallerian degeneration. Because axonal degradation during Wallerian degeneration is calcium dependent, we tested whether Ola axons are susceptible to calcium-mediated axonal degeneration by comparing neuro-filament degradation between Ola and C57BL/6 mice in sciatic nerve explants. Using immunoblot analysis of neurofilament degradation and electron microscopy we found that as in normal axons, axonal degeneration in the Ola is calcium dependent. However, when compared with normal animals, higher levels of calcium were required for complete degradation of neurofilaments in Ola nerve, suggesting a relative insensitivity to calcium-mediated degeneration in the Ola. We conclude that calcium-activated proteases are present and active in Ola axons but that higher levels of calcium are required to accomplish complete axonal degradation. These results suggest a possible mechanism for prolonged survival of transected Ola axons and provide potential insight into the pathophysiology of axonal degeneration in injury and disease.  相似文献   

18.
The phosphorylation and dephosphorylation of specific proteins was demonstrated directly in the intact vertebrate nervous system in vivo. By exploiting the neurons' ability to segregate a select group of cytoskeletal proteins from most other phosphorylated constituents of the cell by axoplasmic transport, we were able to examine the dynamics of phosphate turnover on neurofilament proteins in mouse retinal ganglion cell neurons simultaneously labeled with [32P]orthophosphate and [3H]proline in vivo. Three [3H]proline-labeled neurofilament protein (NFP) subunits, designated H (160-200 kDa), M (135-145 kDa), and L (68-70 kDa), entered optic axons in a mole:mole ratio similar to that of isolated axonal neurofilaments, supporting the notion that newly synthesized NFPs are transported along axons as assembled neurofilaments. NFP subunits incorporated high levels of 32P before reaching axonal sites at the level of the optic nerve. As neurofilaments were transported along axons, however, many initially incorporated [32P]phosphate groups were removed. Loss of these phosphate groups occurred to a different extent on each subunit. A minimum of 50-60 and 35-40% of the labeled phosphate groups was removed in a 5-day period from the L and M subunits, respectively. By contrast, the H subunit exhibited relatively little or no phosphate turnover during the same period. Dephosphorylation of L in axons is accompanied by a decrease in its net state of phosphorylation; changes in the phosphorylation state of H and M, however, also reflect ongoing addition of phosphates to these polypeptides during axonal transport (Nixon, R.A., Lewis, S.E., and Marotta, C.A. (1986) J. Neurosci., in press). The possibility is raised that dynamic rearrangements of phosphate topography on NFPs represent a mechanism to coordinate interactions of neurofilaments with other proteins as these elements are transported and incorporated into the stationary cytoskeleton along retinal ganglion cell axons.  相似文献   

19.
Neurofilaments, which are exclusively found in nerve cells, are one of the earliest recognizable features of the maturing nervous system. The differential distribution of neurofilament proteins in varying degrees of phosphorylation within a neuron provides the possibility of selectively demonstrating either somata and dendrites or axons. Non-phosphorylated neurofilaments typical of somata and dendrites can be visualized with the aid of monoclonal antibody SMI 311, whereas antibody SMI 312 is directed against highly phosphorylated axonal epitopes of neurofilaments. The maturation of neuronal types, the development of area-specific axonal networks, and the gradients of maturation can thus be demonstrated. Optimal immunostaining with SMI 311 and SMI 312 is achieved when specimens are fixed in a mixture of paraformaldehyde and picric acid for up to 3 days and sections are incubated free-floating. Neurons, with their dendritic domains immunostained by SMI 311 in a Golgi-like manner, can be completely visualized in relatively thick sections. The limitations of Golgi-preparations, such as glia-labeling, artifacts, and the staining of only a small non-representative percentage of existing neurons, are not apparent in SMI preparations, which additionally provide the possibility of selectively staining axonal networks. The results achieved in normal fetal brain provide the basis for studies of developmental disturbances. Received: 20 May 1997 / Accepted: 8 September 1997  相似文献   

20.
beta, beta'-Iminodipropionitrile (IDPN), a synthetic compound that selectively impairs slow axonal transport, produced a rearrangement of the axonal cytoskeleton, smooth endoplasmic reticulum, and mitochondria. Immunoperoxidase staining using an antiserum to the 68,000-dalton neurofilament subunit demonstrated a displacement of neurofilaments toward the periphery of the axons of IDPN-treated rats. This change occurred simultaneously along the entire length of the sciatic nerve. Ultrastructural morphometry of the axonal organelles confirmed the peripheral relocation of neurofilaments and also showed a displacement of microtubules, smooth endoplasmic reticulum, and mitochondria to the center of the axons. The overall density of axonal mitochondria was increased, whereas those of other organelles were not significantly changed. Axons were reduced in size by 10--24%, the large axons being more affected than the small ones. The observed rearrangement of axonal organelles may be due to an effect of IDPN on microtubule-neurofilament interactions, which could in turn explain the impairment of the slow transport. Axons in IDPN intoxication are a useful model to study the organization of the axoplasm and the mechanism of axonal transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号