首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Treatment of plasma membrane isolated from murine plasmocytoma MOPC 173 with an EDTA-containing buffer resulted in a 300-fold increase in sensitivity of (Na+ + K+)-stimulated Mg2+-ATPase to ouabain. This phenomenon was associated with the solubilization by EDTA of phospholipid free proteins (approx. 30 000–34 000 daltons) from the cytoplasmic face of the plasma membrane and with removal of about 90% of the membrane bound Ca2+. The recovery of the original resistance to ouabain required specifically Ca2+ and was associated with a binding of the solubilized proteins to the membrane.  相似文献   

2.
The subcellular distribution of adenyl cyclase was investigated in small intestinal epithelial cells. Enterocytes were isolated, disrupted and the resulting membranes fractionated by differential and sucrose gradient centrifugation. Separation of luminal (brush border) and contra-luminal (basolateral) plasma membrane was achieved on a discontinuous sucrose gradient.The activity of adenyl cyclase was followed during fractionation in relation to other enzymes, notably those considered as markers for luminal and contraluminal plasma membrane. The luminal membrane was identified by the membrane-bound enzymes sucrase and alkaline phosphatase and the basolateral region by (Na+ + K+)-ATPase. Enrichment of the former two enzymes in purified luminal plasma membrane was 8-fold over cells and that of (Na+ + K+)-ATPase in purified basolateral plasma membranes was 13-fold. F?-activated adenyl cyclase co-purified with (Na+ + K+)-ATPase, suggesting a common localization on the plasma membrane. The distribution of K+-stimulated phosphatase and 5′-nucleotidase also followed (Na+ + K+)-ATPase during fractionation.  相似文献   

3.
A new technique for isolating fragmented plasma membranes from skeletal muscle has been developed that is based on gentle mechanical disruption of selected homogenate fractions. (Na+ + K+)-stimulated, Mg2+-dependent ATPase was used as an enzymatic marker for the plasma membrane, Ca2+-stimulated, Mg2+-dependent ATPase as a marker for sarcoplasmic reticulum, and succinate dehydrogenase for mitochondria. Cell segments in an amber low-speed (800 x g) pellet of a frog muscle homogenate were disrupted by repeated gentle shearing with a Polytron homogenizer. Sarcoplasmic reticulum was released into the low-speed supernatant, whereas most of the plasma membrane marker remained in a white, fluffy layer of the sediment, which contained sarcolemma and myofibrils. Additional gentle shearing of the white low-speed sediment extracted plasma membranes in a form that required centrifugation at 100,000 x g for pelleting. This pellet, the fragmented plasma membrane fraction, had a relatively high specific activity of (Na+ + K+)-stimulated ATPase compared with the other fractions, but it had essentially no Ca2+-stimulated ATPase activity and only a small percentage of the succinate dehydrogenase activity of the homogenate. Experimental evidence suggests that the fragmented plasma membrane fraction is derived from delicate transverse tubules rather than from the thicker, basement membrane-coated sarcolemmal sheath of muscle cells. Electron microscopy showed small vesicles lined bu a single thin membrane. Hydroxyproline, a characteristic constituent of collagen and basememt membrane, could not be detected in this fraction.  相似文献   

4.
The activity of calcium-stimulated and magnesium-dependent adenosinetriphosphatase which possesses a high affinity for free calcium (high-affinity (Ca2+ + Mg2+)-ATPase, EC 3.6.1.3) has been detected in rat ascites hepatoma AH109A cell plasma membranes. The high-affinity (Ca2+ + Mg2+)-ATPase had an apparent half saturation constant of 77 ± 31 nM for free calcium, a maximum reaction velocity of 9.9 ± 3.5 nmol ATP hydrolyzed/mg protein per min, and a Hill number of 0.8. Maximum activity was obtained at 0.2 μM free calcium. The high-affinity (Ca2+ + Mg2+)-ATPase was absolutely dependent on 3–10 mM magnesium and the pH optimum was within physiological range (pH 7.2–7.5). Among the nucleoside trisphosphates tested, ATP was the best substrate, with an apparent Km of 30 μM. The distribution pattern of this enzyme in the subcellular fractions of the ascites hepatoma cell homogenate (as shown by the linear sucrose density gradient ultracentrifugation method) was similar to that of the known plasma membrane marker enzyme alkaline phosphatase (EC 3.1.3.1), indicating that the ATPase was located in the plasma membrane. Various agents, such as K+, Na+, ouabain, KCN, dicyclohexylcarbodiimide and NaN3, had no significant effect on the activity of high-affinity (Ca2+ + Mg2+)-ATPase. Orthovanadate inhibited this enzyme activity with an apparent half-maximal inhibition constant of 40 μM. The high-affinity (Ca2+ + Mg2+)-ATPase was neither inhibited by trifluoperazine, a calmodulin-antagonist, nor stimulated by bovine brain calmodulin, whether the plasma membranes were prepared with or without ethylene glycol bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid. Since the kinetic properties of the high-affinity (Ca2+ + Mg2+)-ATPase showed a close resemblance to those of erythrocyte plasma membrane (Ca2+ + Mg2+)-ATPase, the high-affinity (Ca2+ + Mg2+)-ATPase of rat ascites hepatoma cell plasma membrane is proposed to be a calcium-pumping ATPase of these cells.  相似文献   

5.
Author index     
The ionic influence and ouabain sensitivity of lymphocyte Mg2+-ATPase and Mg2+-(Na+ + K+)-activated ATPase were studied in intact cells, microsomal fraction and isolated plasma membranes. The active site of 5′-nucleotidase and Mg2+-ATPase seemed to be localized on the external side of the plasma membrane whereas the ATP binding site of (Na+ + K+)-ATPase was located inside the membrane.Concanavalin A induced an early stimulation of Mg2+-ATPase and (Na+ + K+)-ATPase both on intact cells and purified plasma membranes. In contrast, 5′-nucleotidase activity was not affected by the mitogen. Although the thymocyte Mg2+-ATPase activity was 3–5 times lower than in spleen lymphocytes, it was much more stimulated in the former cells (about 40 versus 20 %). (Na+ + K+)-ATPase activity was undetectable in thymocytes. However, in spleen lymphocytes (Na+ + K+)-ATPase activity can be detected and was 30 % increased by concanavalin A. Several aspects of this enzymic stimulation had also characteristic features of blast transformation induced by concanavalin A, suggesting a possible role of these enzymes, especially Mg2+-ATPase, in lymphocyte stimulation.  相似文献   

6.
A technique currently used for isolation of brush border membranes from renal and intestinal epithelium that involves vigorous tissue homogenization and sedimentation of non-luminal membranes in the presence of Mg2+ has been adapted to rat liver. Liver plasma membranes so prepared consisted almost exclusively of vesicles by electron microscopy, showed some contamination with endoplasmic reticulum and minimal contamination with mitochondria or Golgi by marker enzymes, were highly enriched in alkaline phosphatase, Mg2+-ATPase, and 5′-nucleotidase activity compared with homogenate, and showed little enrichment in (Na+,K+)-ATPase. Comparison of this enzymatic profile with cytochemical studies localizing (Na+,K+)-ATPase and alkaline phosphatase to the sinusoidal/lateral and canalicular membranes, respectively, suggested that these membranes were predominantly of canalicular origin. They had a lower (Na+ + K+)-ATPase specific activity, lower lipid content, and higher cholesterol to phospholipid molar ratio than a conventional plasma membrane preparation believed to be enriched in canaliculi. Moreover, it was possible to measure movement of d-[3H]glucose into an osmotically sensitive space bounded by these membrane vesicles.  相似文献   

7.
The sarcolemmal membrane obtained from rat heart by hypotonic shock-LiBr treatment method was found to incorporate 32P from [γ-32P] ATP in the absence and presence of cyclic AMP and protein kinase. The phosphorylated membrane showed an increase in Ca2+ ATPase and Mg2+ ATPase activities without any changes in Na+K+ ATPase activity. The observed increase in Ca2+Mg2+ ATPase activity was found to be associated with an increase in Vmax value of the reaction whereas Ka value for Ca2+Mg2+ was not altered. These results provide information concerning biochemical mechanism for increased calcium entry due to hormones which are known to elevate cyclic AMP levels in myocardium and produce a positive inotropic effect.  相似文献   

8.
The influence of Tl+ on Na+ transport and on the ATPase activity in human erythrocytes was studied. 0.1–1.0 mM Tl+ added to a K+-free medium inhibited the ouabain-sensitive self-exchange of Na+ and activated both the ouabain-sensitive 22Na outward transport and the transport related ATPase. 5–10 mM external Tl+ caused inhibition of the ouabain-sensitive 22Na efflux as well as the (Na+ + Tl+)-ATPase. Competition between the internal Na+ and rapidly penetrating thallous ions at the inner Na+-specific binding sites of the erythrocyte membrane could account for the inhibitory effect of Tl+. An increase of the internal Na+ concentration in erythrocytes or in ghosts protected the system against the inhibitory effect of high concentration of Tl+. A protective effect of Na+ was also demonstrated on the (Na+ + Tl+)-ATPase of fragmented erythrocyte membranes studied at various Na+ and Tl+ concentrations.  相似文献   

9.
A microsomal fraction from canine brain gray matter has been extracted with the detergent sodium dodecyl sulfate to partially purify the membrane bound Na+ + K+)-stimulated adenosine triphosphatase. Phospholipid, glycolipid, and a family of other glycoproteins are also enriched by the procedure; it is proposed that the product is an intrinsic membrane protein fraction. 6–8-fold purification of (Na+ + K+)-ATPase is obtained without solubilizing the enzyme and without irreversibly altering its turnover number. Final specific activities are 350–400 μmol of ATP hydrolyzed/h per mg protein. The stimulation and reversible inactivation of the (Na+ + K+)-ATPase by dodecyl sulfate were examined for information relevant to the mechanism of action of the detergent.  相似文献   

10.
To determine the mechanism of the maturation of the brush border membrane in intestinal epithelial cells, purification of the plasma membrane from undifferentiated rat crypt cells and of the basal-lateral membrane from villous cells has been performed. The method is based on density perturbation of the mitochondria to selectively disrupt their association with the membrane. With both cell populations, two membrane subfractions displaying the same respective density on sucrose gradient have been obtained with an overall yield of 15–20% and a 10-fold enrichment of the plasma membrane markers 5′-nucleotidase and (Na+ + K+)-dependent, ouabain-sensitive ATPase chosen to follow their purification. The four fractions constituted by sheets and apparently closed vesicles of various sizes. Each fraction was characterized by a distinct protein composition and different levels of enzyme activities. The cells, used for the preparation of the membranes, were isolated as a villus to crypt gradient. This separation and that of the membranes led to the conclusion that the (Na+ + K+)-dependent ATPase is localized principally in the plasma membrane of all cells whatever their state of maturation, while 5′-nucleotidase is predominantly located in the basal-lateral membrane of the villous cells and may serve as a specific marker for the purification of this membrane. Finally it has been shown that aminopeptidase, disaccharidases and alkaline phosphatase do not appear simultaneously in the maturation process of the cells, alkaline phosphatase being absent from the crypt cells and aminopeptidase being the first to be synthesized. This enzyme seems to appear in the crypt cells membrane before being integrated into the mature brush border membrane.  相似文献   

11.
Plasma membrane vesicles of Ehrlich ascites carcinoma cells have been isolated to a high degree of purity. In the presence of Mg2+, the plasma membrane preparation exhibits a Ca2+-dependent ATPase activity of 2 μmol Pi per h per mg protein. It is suggested that this (Ca2+ + Mg2+)-ATPase activity is related to the measured Ca2+ transport which was characterized by Km values for ATP and Ca2+ of 44 ± 9 μM and 0.25 ± 0.10 μM, respectively. Phosphorylation of plasma membranes with [γ-32P]ATP and analysis of the radioactive species by polyacrylamide gel electrophoresis revealed a Ca2+-dependent hydroxylamine-sensitive phosphoprotein with a molecular mass of 135 kDa. Molecular mass and other data differentiate this phosphoprotein from the catalytic subunit of (Na+ + K+)-ATPase and from the catalytic subunit of (Ca2+ + Mg2+)-ATPase of endoplasmic reticulum. It is suggested that the 135 kDa phosphoprotein represents the phosphorylated catalytic subunit of the (Ca2+ + Mg2+)-ATPase of the plasma membrane of Ehrlich ascites carcinoma cells. This finding is discussed in relation to previous attempts to identify a Ca2+-pump in plasma membranes isolated from nucleated cells.  相似文献   

12.
Gastric microsomes do not contain any significant Ca2+-stimulated ATPase activity. Trypsinization of pig gastric microsomes in presence of ATP results in a significant (2–3-fold) increase in the basal (with Mg2+ as the only cation) ATPase activity, with virtual elimination of the K+-stimulated component. Such treatment causes unmaksing of a latent Mg2+-dependent Ca2+-stimulated ATPase. Other divalent cations such as Sr2+, Ba2+, Zn2+ and Mn2+ were found ineffective as a substitute for Ca2+. Moreover, those divalent cations acted as inhibitors of the Ca2+-stimulated ATPase activity. The pH optimum of the enzyme is around 6.8. The enzyme has a Km of 70 μM for ATP and the Ka values for Mg2+ and Ca2+ are about 4 · 10?4M and 10?7 M, respectively. Studies with inhibitors suggest the involvement of sulfhydryl and primary amino groups in the operation of the enzyme. Possible roles of the enzyme in gastric H+ transport have been discussed.  相似文献   

13.
The influence of the mode of preparation upon some of the characteristics of white adipose tissue plasma membranes and microsomes has been reported. Plasma membrane fractions prepared from mitochondrial pellet were shown to have higher specific activities of (Mg2+ + Na+ + K+)-ATPase than plasma membranes originating in crude microsomes. Isolation of fat cells by collagenase treatment was found to result in a decrease in specific activity of the plasma membrane enzymes; in plasma membranes prepared from isolated fat cells, the specific activity values obtained for (Mg2+ + Na+ + K+)-ATPase and 5′-nucleotidase were only 42% and 6.3% respectively of those obtained in plasma membranes prepared from whole adipose tissue. Purification of whole adipose tissue crude microsomes by hypotonic treatment caused extensive solubilization of the endoplasmic reticulum marker enzymes, NADH oxidase and NADPH cytochrome c reductase. The lability of endoplasmic reticulum marker enzymes, however, was found to be greatly diminished in the preparations from isolated fat cells. The possibility that NADH oxidase and NADHPH cytochrome c reductase activities found in the plasma membranes are microsomal enzymes adsorbed by the plasma membranes is discussed. The peptide patterns as well as the NADH oxidase and NADPH cytochrome c reductase activity patterns of plasma membranes and purified microsomes were compared by means of sodium dodecyl sulfate or Triton X-100 polyacrylamide gel electrophoresis.  相似文献   

14.
The exposure of the Na+/K+/Mg2+- and Ca2+/Mg2+-stimulated ATPase activities in human erythrocytes through the use of several different lytic procedures revealed significant variations in the level of activity. Density (age)-separated as well as mixed-age human erythrocytes were subjected to hemolysis in isotonic buffer using saponin or ethylene glycol, to hemolysis in hypotonie buffer using low osmolarity buffers, or to freeze-thaw to allow potential accessibility to the ATPases. The results ranged from maximum exposure of both types of ATPases in saponin-treated cells, to little or no exposure of activity in ethylene glycol-treated cells, to variable responses in membranes derived by hypotonie hemolysis. The inability to elicit maximum exposure of ATPases in young cells by the freeze-thaw treatment was reversed by the use of saponin lysis in isotonic medium. These results illustrate the importance of the lytic conditions of membrane preparations on the recovery of as well as exposure to ATPase activities. It is concluded that saponin lysis in isotonic buffer medium is the preferred lytic technique for preparation of membranes retaining significant levels of the Na+/K+/Mg2+- and Ca2+/Mg2+-stimulated ATPases. These data are also discussed in reference to the degree of retention of the activator protein for the Ca2+Mg2+ ATPase system.  相似文献   

15.
(Na+ + K+)-dependent ATPase preparations from rat brain, dog kidney, and human red blood cells also catalyze a K+-dependent phosphatase reaction. K+ activation and Na+ inhibition of this reaction are described quantitatively by a model featuring isomerization between E1 and E2 enzyme conformations with activity proportional to E2K concentration:
Differences between the three preparations in K0.5 for K+ activation can then be accounted for by differences in equilibria between E1K and E2K with dissociation constants identical. Similarly, reductions in K0.5 produced by dimethyl sulfoxide are attributable to shifts in equilibria toward E2 conformations. Na+ stimulation of K+-dependent phosphatase activity of brain and red blood cell preparations, demonstrable with KCl under 1 mM, can be accounted for by including a supplementary pathway proportional to E1Na but dependent also on K+ activation through high-affinity sites. With inside-out red blood cell vesicles, K+ activation in the absence of Na+ is mediated through sites oriented toward the cytoplasm, while in the presence of Na+ high-affinity K+-sites are oriented extracellularly, as are those of the (Na+ + K+)-dependent ATPase reaction. Dimethyl sulfoxide accentuated Na+-stimulated K+-dependent phosphatase activity in all three preparations, attributable to shifts from the E1P to E2P conformation, with the latter bearing the high-affinity, extracellularly oriented K+-sites of the Na+-stimulated pathway.  相似文献   

16.
(1) A (K+ + H+)-ATPase containing membrane fraction, isolated from pig gastric mucosa, has been further purified by means of zonal electrophoresis, leading to a 20% increase in specific activity and an increase in ratio of (K+ + H+)-ATPase to basal Mg2+-ATPase activity from 9 to 20. (2) The target size of (Na+ + K+)-ATPase, determined by radiation inactivation analysis, is 332 kDa, in excellent agreement with the earlier value of 327 kDa obtained from the subunit composition and subunit molecular weights. This shows that the Kepner-Macey factor of 6.4·1011 is valid for membrane-bound ATPases. (3) The target size of (K+ + H+)-ATPase is 444 kDa, which, in connection with a subunit molecular weight of 110000, suggests a tetrameric assembly of the native enzyme. The ouabain-insensitive K+-stimulated p-nitrophenylphosphatase activity has a target size of 295 kDa. (4) In the presence of added Mg2+ the target sizes of the (K+ + H+)-ATPase and its phosphatase activity are decreased by about 15%, while that for the (Na+ + K+)-ATPase is not significantly changed. This observation is discussed in terms of a Mg2+-induced tightening of the subunits composing the (K+ + H+)-ATPase molecule.  相似文献   

17.
A method is described for the preparation of synaptosomes and synaptosomal membranes from chicken brain. Procedures for isolating rat synaptosomal membranes could not be used directly; several modifications of existing procedures are reported. Purity of the subcellular and subsynaptosomal fractions was monitored by electron microscopy and measurements of ferrocytochrome c: oxygen oxidoreductase (EC 1.9.3.1.), monoamine: oxygen oxidoreductase (deaminating) (EC 1.4.3.4), rotenoneinsensitive NADH: cytochrome c oxidoreductase (EC 1.6.99.3), NADPH: cytochrome c oxidoreductase (EC 1.6.99.1), orthophosphoric monoester phosphohydrolase (EC 3.1.3.2), ATP phosphohydrolase (EC 3.6.1.4), and levels of RNA. Microsomes are the main contaminant of the synaptosomal membrane fraction. Mitochondrial and lysosomal enzymes occur in lesser amounts. No myelin contamination was observed. Marker enzymes for contaminants suggest that these synaptosomal membranes are as pure as membranes described by others, and the specific activity of a neuronal membrane marker, (Na+?K+)-activated ATPase, is as high as other preparations. Levels of this enzyme in the membrane fraction are enriched 13-fold over homogenate ATPase levels.  相似文献   

18.
Renal basal-lateral and brush border membrane preparations were phosphorylated in the presence of [γ-32P]ATP. The 32P-labeled membrane proteins were analysed on SDS-polyacrylamide gels. The phosphorylated intermediates formed in different conditions are compared with the intermediates formed in well defined membrane preparations such as erythrocyte plasma membranes and sarcoplasmic reticulum from skeletal muscle, and with the intermediates of purified renal enzymes such as (Na+ + K+)-ATPase and alkaline phosphatase. Two Ca2+-induced, hydroxylamine-sensitive phosphoproteins are formed in the basal-lateral membrane preparations. They migrate with a molecular radius Mr of about 130 000 and 100 000. The phosphorylation of the 130 kDa protein was stimulated by La3+-ions (20 μM) in a similar way as the (Ca2+ + Mg2+)-ATPase from erythrocytes. The 130 kDa phosphoprotein also comigrated with the erythrocyte (Ca2+ + Mg2+)-ATPase. In addition in the same preparation, another hydroxylamine-sensitive 100 kDa phosphoprotein was formed in the presence of Na+. This phosphoprotein comigrates with a preparation of renal (Na+ + K+)-ATPase. In brush border membrane preparations the Ca2+-induced and the Na+-induced phosphorylation bands are absent. This is consistent with the basal-lateral localization of the renal Ca2+-pump and Na+-pump. The predominant phosphoprotein in brush border membrane preparations is a 85 kDa protein that could be identified as the phosphorylated intermediate of renal alkaline phosphatase. This phosphoprotein is also present in basal-lateral membrane preparations, but it can be accounted for by contamination of those membranes with brush border membranes.  相似文献   

19.
Treatment by EDTA of purified plasma membranes from MF2S cells (a variant of the murine plasmacytoma MOPC 173) solubilized proteins and increased by a 1000-fold the sensitivity of (Na+ + K+)-ATPase to ouabain. When added back with Ca2+ to treated plasma membranes, these EDTA-solubilized proteins restored the initial sensitivity of the enzyme to its inhibitor. We report the purification of a protein of Mr 32 000, isolated from the EDTA-treated membrane supernatant. This protein was purified by a one-step procedure involving a preparative polyacrylamide gel electrophoresis without detergent. In the presence of Ca2+ it was able to restore the original sensitivity to ouabain of (Na+ + K+)-ATPase from EDTA-treated membrane. This protein was shown to be similar to the β-actinin described by Maruyama by the following criteria: (1) molecular weight and amino acid composition; (2) cross-reactivity with their respective antisera; (3) in the presence of Ca2+ the same quantitative biological activity on ouabain sensitivity of the (Na+ + K+)-ATPase. A possible interaction between β-actinin, calmodulin and membrane-bound (Na+ + K+)-ATPase is discussed.  相似文献   

20.
To determine whether changes in unsaturation of fatty acids in rat liver plasma membranes might alter activities of membrane-associated enzymes, liver plasma membranes were prepared from rats fed purified diets lacking or supplemented with essential fatty acids. Two methods of membrane purification were used. A similar degree of purification was obtained with both methods for both depleted and control membranes, as indicated by marker enzyme purification. The proportion of essential fatty acids of the linoleate series was significantly lower in phospholipids from depleted rats. The specific activity of 5′-nucleotidase was lower, and the activity, V and apparent Km for total (Na++K++Mg2+)-ATPase were higher in the depleted liver plasma membranes. Arrhenius plots of total ATPase activity showed a discontinuity at the same temperature for both the depleted and control membranes. Activity with the depleted membranes was higher at all temperatures tested. Supplementation of deficient rats with a source of essential fatty acids (corn oil) restored V and apparent Km values to normal. Adenylate cyclase activity in the presence of fluoride, glucagon or glucagon plus GTP was significantly lower in the depleted plasma membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号