首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human erythrocytes have been treated with lipid vesicles in order to alter the cholesterol content of the cell membrane. Erythrocytes have been produced with cholesterol concentrations between 33 and 66 mol% of total lipid. The rate of valinomycin-mediated uptake of rubidium into the red cells at 37°C was lowered by increasing the cholesterol concentration of the cell membrane. Cholesterol increased the permeability to valinomycin at 20°C of small (less than 50 nm), unilamellar egg phosphatidylcholine vesicles formed by sonication. Cholesterol decreased the permeability to valinomycin at 20°C of large (up to 200 nm) unilamellar egg phosphatidylcholine vesicles formed by freezethaw plus brief sonication. It is concluded that cholesterol increases the permeability of small membrane vesicles to hydrophobic penetrating substances while above the transition temperature but has the opposite effect on large membrane vesicles and on the membranes of even larger cells.  相似文献   

2.
3.
Cytochrome b5 was found to bind readily to sonicated vesicles containing as much as 0.8 mol cholesterol per mol egg phosphatidylcholine. This observation conflicts with the suggestion of Enomoto and Sato ((1977) Biochim. Biophys. Acta 466, 136–147) that cholesterol prevents binding of this protein to erythrocyte membranes.  相似文献   

4.
13C-NMR spectra of cholesterol 90% enriched at C-4 with 13C have been obtained in CHCl3 and in sonicated egg phosphatidylcholine vesicles. 13C spin-lattice relaxation times, nuclear Overhauser effects and spin-spin relaxation times have been measured for the C-4 carbon of cholesterol in phosphatidylcholine bilayers as a function of cholesterol content and temperature. All the data are consistent with a correlation time for axial rotation of about 10?10 s. This rotation is one or two orders of magnitude faster than axial rotation of the phospholipid molecule.  相似文献   

5.
The effect of an aqueous dispersion of succinylphosphatidylcholine on an aqueous suspension of phosphatidylcholine vesicles was studied by gel chromatography, freeze-fracture electron microscopy and proton nuclear magnetic resonance with Mn2+ (broadening paramagnetic reagent). Total phospholipid concentrations were in the range 10–20 mM.Succinylphosphatidylcholine is in micellar form and behaves as a detergent. The structures obtained depend on the molar percentage of succinylphosphatidylcholine.Above a succinylphosphatidylcholine molar percentage of 60%, mixed micelles are formed, assumed to be essentially spherical.Below a succinylphosphatidylcholine molar percentage of 30%, principally mixed vesicles are observed, with an external diameter of 215–240 Å, and an almost constant internal volume.Between 30 and 60% of succinylphosphatidylcholine, a mixture of these structures is obtained; rod-shaped profiles are also observed in electron microscopy, which may correspond to sections of leaky vesicles or to a new kind of cylindrical micelle.  相似文献   

6.
The binding of cytochrome b5 to phosphatidylcholine vesicle   总被引:2,自引:0,他引:2  
Cytochrome b5 was isolated from rabbit liver by a detergent procedure and by a proteolytic procedure. Only cytochrome b5 isolated by the detergent procedure would bind to phosphatidylcholine vesicles and the cytochrome b5 was not removed by 1 M KCl. The Eo′ and visible absorption spectrum of the cytochrome b5 and its rate of reduction by NADH plus NADH-cytochrome b5 reductase did not change appreciably upon binding. These data indicate that cytochrome b5 is bound to phospholipid by a hydrophobic interaction which leaves the heme portion in the aqueous environment.  相似文献   

7.
Phase modulation fluorescence spectroscopy was used to investigate the influence of cholesterol (0 to 50 mol%) on acyl chain dynamics in multilamellar vesicles of phosphatidylcholine. Four different phosphatidylcholines (DPPC, DOPC, POPC, and egg PC) and six different fluorescent probes (diphenylhexatriene and five anthroyloxy fatty acids) were employed. We found that: (1) Increased cholesterol content had only slight effects on fluorescence lifetimes of the six probes. (2) Increased cholesterol content increased the steady-state fluorescence anisotropy (r) of all the probes except 16-anthroyloxy palmitate (16-AP) in each of the four phosphatidylcholines. (3) Added cholesterol tended to limit the extent of probe rotation (as reflected by r, the infinite-time anisotropy) to a much greater extent than it altered the rate of probe rotation. (4) The tendency for cholesterol to order the structure of the bilayer was greatest in the proximal half of the acyl chains and diminished toward the center of the bilayer. (5) In some phosphatidylcholines the rotation rates of probes located near the bilayer center (diphenylhexatriene and 16-AP) were apparently increased by increasing levels of cholesterol. (6) In several respects dipalmitoylphosphatidylcholine (DPPC) vesicles responded differently to increased cholesterol than vesicles of the other three phosphatidylcholines. (7) A single second-order equation described the relationship between rand r for the five anthroyloxy fatty acid probes in the four different phosphatidylcholines over a wide range of cholesterol content. The data for diphenylhexatriene in the different phosphatidylcholines could not be fit by a single equation.  相似文献   

8.
The excimer/monomer ratio of emission intensities (IE/IM) and the enhancement of the 0-0 vibronic transition in the fluorescence spectra of pyrene (PY) and 16-(1-pyrenyl)hexadecanoic acid (C16PY) were used to investigate the localization of PY in the bilayers of small unilamellar vesicles constituted of phosphatidylcholine (SUV-PC). First, from comparison of the fluorescence characteristics of PY in water with those of PY incorporated into the SUV-PC membranes, we concluded that the probe is incorporated preferentially in the lipid phase of the vesicles and not in the bulk aqueous phase. In addition, we found that, contrary to what happens with the pyrenyl moiety of C16PY the location of PY varies with its relative concentration in the membrane space. The critical concentration was observed to be around 1.0 mol% of incorporated PY. At concentrations below this value, PY is located in the hydrocarbon core of the lipid bilayers. Above 1.0 mol%, the PY molecules reside preferentially in the neighbourhood of the glyceryl moiety region of the PC vesicles.  相似文献   

9.
The influence of different gangliosides (GM1, GD1a, GT1b) on the fluidity and surface dynamics of phosphatidylcholine small unilamellar vesicles was studied by electron paramagnetic resonance. 5-and 16-nitroxystearic acid, sounding respectively the region close to the surface and that close to the hydrophobic core of the vesicle, were employed as spin-label probes. The signals released by 5-nitroxystearic acid showed that the presence of gangliosides reduced the mobility of the hydrocarbon chains around the probe. The effect increased by increasing ganglioside concentration, and diminished from GM1 to GD1a and GT1b. The decrease of membrane fluidity was also monitored by the 16-nitroxystearic acid probe. On addition of Ca2+ the fluidity of ganglioside-containing vesicles (as signalled by the 5-nitroxystearic acid probe) promptly decreased, thereafter returning slowly to the original value. It is suggested that gangliosides cause strong side-side head group interactions on the bilayer surface -between ganglioside oligosaccharide chains and between ganglioside and phosphatidylcholine polar portions - which lead the lipid chains to assembly in a more rigid fashion. The influence of Ca2+ is interpreted as due to lateral phase separation in the vesicle membrane. This phenomenon can be related to the formation or stabilization of ganglioside clusters on the vesicle surface.  相似文献   

10.
Cytochrome b5 was incorporated into large vesicles of 1-palmitoyl-2-dibromostearoylphosphatidylcholine by mixing lipid, protein, and deoxycholate followed by removal of the detergent by gel filtration. The tryptophan fluorescence emanating from the hydrophobic membrane-binding domain was quenched more effectively when the bromine atoms were in the 6,7-positions than when they were in the 15,16-positions of the acyl chain. To more precisely define the position of the quenchable tryptophan, the experiment was repeated with lipids with the bromine atoms at the 4,5-, 6,7- or 9,10-positions. Again the 6,7 species was the most efficient quencher. The cytochrome b5 bound to these vesicles would not transfer to small unilamellar sonicated vesicles and so was in the "tight" configuration. If the cytochrome were added to the vesicles after the detergent was removed, the same order of quenching was seen but the cytochrome would transfer to other vesicles. These data indicate that the quenching of the tryptophan fluorescence is greatest when the bromines are at the 6,7-positions whether the vesicles are large or small and whether the cytochrome is in the tight or "loose" configuration and so place the tryptophan 0.7 nm below the vesicle surface in all of these membranes.  相似文献   

11.
Unsonicated liposomes prepared from dimyristoyl phosphatidylcholine were nearly completely dissolved during a 3 h incubation with rat plasma at or close to the phase-transition temperature of 24°C. At 37 or 15°C virtually no liposomal disintegration was observed even after 24 h of incubation. The liposomal solubilization, which was monitored by turbidity measurements or by determination of phospholipid sedimentability, was accompanied by the formation of a phospholipid-protein complex similar or identical to the one we previously reported to be formed from sonicated liposomes of egg phosphatidylcholine (Scherphof, G., Roerdink, F., Waite, M. and Parks, J. (1978) Biochim. Biophys. Acta 542, 296–307). Unsonicated multilamellar liposomes made of egg phosphatidylcholine were completely resistant to the dissolving potency of plasma when incubated at 37°C. Liposomes from equimolar mixtures of dimyristoyl and dipalmitoyl phosphatidylcholine were only degraded by plasma in the temperature range between 30 and 35°C at which temperature this cocrystallizing phospholipid mixture undergoes a phase transition. However, even at these temperatures the rate of dissolution of this mixture was significantly lower than of dimyristoyl phosphatidylcholine at 24°C. In the dissolving process of this mixture a slight preference for the lower-melting component was observed.The ability of cholesterol to completely abolish the susceptibility of dimyristoyl phosphatidylcholine liposomes to plasma at a 1:2 molar ratio of cholesterol to phospholipid substantiates the essential role of the phase transition in the process of liposome solubilization.When liposomes of the monotectic mixtures dimyristoyl and distearoyl phosphatidylcholine or dilauroyl and distearoyl phosphatidylcholine were incubated with plasma at temperatures in between those at which the constituent lipids undergo a phase change in the mixture, the liposomes were slowly disolved. Under those conditions a selective removal of the lipids in the liquid-crystalline phase was observed.It is concluded that for the plasma-induced dissolution of unsonicated liposomes, which is most probably achieved by interaction with (apo)lipoproteins, the presence of phase boundaries is required in much the same way as was first reported for phospholipases by Op den Kamp, J.A.F., de Gier, J. and Van Deenen, L.L.M. (1974) Biochim. Biophys. Acta 345, 253–256).  相似文献   

12.
Photoactivable phospholipids containing either α-diazo-β-trifluoropropionyloxy or m-diazirinophenoxyl groups in the ω-positions of sn-2 fatty acyl chains were synthesized and incorporated into sonicated vesicles containing 33 mol% of cholesterol. Photolysis of the vesicles at 350 nm produced covalent cross-links between the synthetic phospholipids and cholesterol. The cross-linked products obtained using [14C]cholesterol were characterized by their chromatographic behavior, cleavage on phospholipase A2 treatment, base-catalyzed transesterification and mass spectral measurements. The cross-linking was shown not to involve the 3-β-hydroxyl group of cholesterol, and it was concluded that the reactive carbene intermediates formed from the photolabels inserted into the hydrocarbon skeleton of cholesterol in the bilayer. The extent of cross-linking obtained was comparable to that observed previously using phospholipids alone, indicating that no lateral phase separation occurred. The present approach is promising for further precise studies of the molecular interactions between cholesterol and phospholipids in biological membranes.  相似文献   

13.
    
Cholesterol readily exchanges between human skin fibroblasts and unilamellar phospholipid vesicles. Only a fraction of the exchangeable cholesterol and only 10–15% of the total cellular free cholesterol is available for net movement or depletion to cholesterol-free phosphatidylcholine vesicles. [14C]Cholesterol introduced into the fibroblast plasma membrane by exchange from lipid vesicles does not readily equilibrate with fibroblast cholesterol labelled endogenously from [3H]mevalonic acid. While endogenously-synthesized [3H]cholesterol readily becomes incorporated into a pool of esterified cholesterol, little, if any, of the [14C]cholesterol introduced into the fibroblast plasma membrane by exchange from lipid vesicles becomes available for esterification. We interpret these findings as suggesting that: (1) net cholesterol movement from fibroblasts to an acceptor membrane is limited to a small percentage of the plasma membrane cholesterol, and (2) separate pools of cholesterol exist in human skin fibroblasts, one associated with the plasma membrane and the second associated with intracellular membranes, and equilibration of cholesterol between the two pools is a very limited process.  相似文献   

14.
Amphotericin B transfer between single-walled vesicles of dipalmitoylphosphatidylcholine (DPPC) and of egg phosphatidylcholine, both containing 10 mol% cholesterol, has been studied concurrently by circular dichroism spectroscopy and permeability measurements. At 22°C amphotericin B is rapidly transferred from DPPC to DPPC vesicles as well as from egg phosphatidylcholine to egg phosphatidylcholine vesicles. On the other hand, although amphotericin B is rapidly transferred from egg phosphatidylcholine to DPPC vesicles, it is not transferred from DPPC to egg phosphatidylcholine vesicles. At 48°C, above the transition temperature of DPPC, transfer occurs rapidly both ways. These results are interpreted in terms of difference of association constant of amphotericin B with vesicle membranes in the gel and liquid-crystalline state.  相似文献   

15.
The reaction progress curve for the action of pig-pancreatic phospholipase A2 on dimyristoylphosphatidylcholine vesicles is characterized under a variety of conditions. The factors that regulate the rate of hydrolysis during the presteady-state phase determine the latency period. The results demonstrate that the accelerated hydrolysis following the latency phase of the reaction progress curve is due to the product-assisted binding of the enzyme to the substrate bilayer by chaning the number of bindings sites and therefore the binding equilibrium. A critical mole fraction of products appears to be formed in the substrate bilayers before the steady-state phase of hydrolysis begins. The latency phase shows a minimum at the phase-transition temperature of the substrate vesicles; however, we did not observe a significant binding of the enzyme to pure substrate bilayers even at the phase-transition temperature. The rate of binding of the enzyme is found to be fast and the rate of desorption of the bound enzyme is very slow compared to the latency phase. The rate of redistribution of products between substrate bilayers is rather slow. These observations demonstrate that during the latency phase of the action of phospholipase A2, a critical mole fraction of products is formed in the substrate bilayer.  相似文献   

16.
Deuterium solid-state NMR spectroscopy was used to qualitatively study the effects of both 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (PLiPC) and cholesterol on magnetically aligned phospholipid bilayers (bicelles) as a function of temperature utilizing the chain-perdeuterated probe 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC-d54) in DMPC/dihexanoylPC (DHPC) phospholipid bilayers. The results demonstrate that polyunsaturated PC and cholesterol were successfully incorporated into DMPC/DHPC phospholipid bilayers, leading to a bicelle that will be useful for investigations of eukaryotic membrane protein-lipid interactions. The data indicate that polyunsaturated PC increases membrane fluidity and decreases the minimum magnetic alignment temperature for DMPC/DHPC bicelles. Conversely, the introduction of cholesterol into aligned DMPC/DHPC bilayers decreases fluidity in the membrane and increases the minimum temperature necessary to magnetically align the phospholipid bilayers. Finally, the addition of Tm3+ to magnetically aligned DMPC/DMPC-d54/PLiPC/DHPC bilayers doubles the quadrupolar splittings, indicating that this unique bicelle system can be aligned with the bilayer normal parallel to the static magnetic field.  相似文献   

17.
Phloretin and phloretin-like dipolar non-electrolytes strongly quench the fluorescence of several membrane-bound probes, including 1,6-diphenylhexa-1,3,5-triene and anthroyl derivatives of long-chain fatty acids. Fluorescence intensity measurements therefore provide a simple and sensitive method to study the equilibrium binding properties and permeability of phloretin-like molecules in biological and artificial membrane systems. The dissociation constants for the binding of phloretin and naringenin to phosphatidylcholine vesicle membranes are determined, assuming the Stern-Volmer relation, from the fluorescence intensity of intramembrane probes as a function of phloretin and naringenin concentrations. Results (phloretin, 9 ± 1 μM; naringenin, 21 ± 4 μM) agree with the dissociation constants obtained using absorption titration performed in the absence of fluorescent probes. Fluorescence nanosecond lifetime measurements show that the mechanism of quenching of diphenylhexatriene and 16-anthroylpalmitic acid by phloretin and naringenin is largely diffusional in nature. The transmembrane movement of phloretin through phosphatidylcholine vesicles was observed by the stopped-flow technique, in which phloretin is mixed rapidly with a vesicle solution containing a membrane-bound fluorescent probe. The time course obtained by fluorescence measurements was identical to that obtained in a parallel measurement of the time course of optical absorption of phloretin. Stopped-flow data for the permeability of phosphatidylcholine liposomes and red blood cell membranes are also presented. The use of a membrane-bound indicator greatly extends the range of concentrations and pH values as well as the types of systems which can be characterized by optical means.  相似文献   

18.
Dielectric measurements on planar egg phosphatidylcholine bilayers formed from n-hexadecane solutions indicate that these bilayers contain very low equilibrium concentrations of alkane. In 100 mM KCl the capacitance of the hydrophobic region was found to be 7.0 ±0.2 mF/m2. The addition of cholesterol (at 2:1 mole ratio) was found to affect only marginally the capacitance of the hydrophobic region of such bilayers. Precise measurements of the frequency dependence of the bilayer impedance at very low frequencies now allow the resolution of several electrically distinct substructural regions within the bilayer. Examination of the effects of cholesterol inclusion upon the electrical parameters of these substructural regions indicate that cholesterol spans the acetyl region (i.e. the region containing the glycerol bridge of the phosphatidylcholine molecules in the bilayer) with the hydroxyl group of the cholesterol molecules located inbetween the phosphate group and the glycerol oxygens of the phosphatidylcholine molecules. The capacitance of the hydrophobic region of both phosphatidylcholine and phosphatidylcholine/cholesterol bilayers formed from n-hexadecane solutions was found to decrease slightly as the external KCl concentration was decreased.  相似文献   

19.
If cholesterol is a substrate of P450 3A4, then it follows that it should also be an inhibitor, particularly in light of the high concentrations found in liver. Heme perturbation spectra indicated a K(d) value of 8 μM for the P450 3A4-cholesterol complex. Cholesterol inhibited the P450 3A4-catalyzed oxidations of nifedipine and quinidine, two prototypic substrates, in liver microsomes and a reconstituted enzyme system with K(i) ~ 10 μM in an apparently non-competitive manner. The concentration of cholesterol could be elevated 4-6-fold in cultured human hepatocytes by incubation with cholesterol; the level of P450 3A4 and cell viability were not altered under the conditions used. Nifedipine oxidation was inhibited when the cholesterol level was increased. We conclude that cholesterol is both a substrate and an inhibitor of P450 3A4, and a model is presented to explain the kinetic behavior. We propose that the endogenous cholesterol in hepatocytes should be considered in models of prediction of metabolism of drugs and steroids, even in the absence of changes in the concentrations of free cholesterol.  相似文献   

20.
T. N. Kropacheva  J. Raap   《FEBS letters》1999,460(3):1219-504
The effect of a transmembrane potential on ion channel formation by zervamicin II (ZER-II) was studied in a vesicular model system. The dissipation of diffusion potential caused by addition of ZER-II to small phosphatidylcholine vesicles was monitored using fluorescent (Safranine T) and optical (Oxonol YI) probes. Cis-positive potentials facilitated channel formation, while at cis-negative potentials, ion fluxes were inhibited. A potential-independent behavior of ZER-II was observed at high peptide concentrations, most likely due to its membrane modifying property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号