首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in turbidity seen when chromaffin granule membrane ghosts are aggregated by Ca2+ can be modelled as dimerization of hollow spheres using Rayleigh-Gans-Debye light-scattering theory. The experimental changes agree well with the calculations. Thus, if shape or refractive index changes produced by osmotic perturbation, ion uptake, etc. can be excluded, turbidity readings can be used to follow the progress of the aggregation reaction of storage vesicles and other small particles or macromolecules.  相似文献   

2.
Abstract

The structure and stability of the left handed Z* DNA aggregate was examined by spectroscopic methods and by electron microscopy. Poly(dGdC), upon heating in the presence of Mn++, forms a large aggregate which may be sedimented at 12,000 X g, with a circular dichroism spectrum characteristic of left handed DNA Aggregation gives rise to turbidity changes at visible wavelengths, providing a convenient means of monitoring the transition in solution. The wavelength dependence of turbidity is consistent with the scattering behavior of a long thin rod. Electron microscopy shows that Z* DNA is a large fibrous structure of indeterminant length, with a uniform diameter of approximately 20 nm. The results obtained in solution and under the requisite conditions for electron microscopy are mutually consistent Poly(dGdC) preparations with average lengths of 60,240,500, and 2000 base pairs all form Z* DNA Poly(dGm5dC) forms Z* DNA in the presence of Mn++ without heating, but poly(dAdC)-poly(dGdT) and calf thymus DNA cannot be induced to the Z* form under any conditions tried. Kinetic studies, monitored by turbidity changes, provide evidence that the formation of Z* DNA proceeds by a nucleated condensation mechanism. Dissolution of the Z* aggregate results from the chelation of Mn++ or by the addition of the intercalator ethidium bromide. The allosteric conversion of Z* DNA to an intercalated, right handed form by ethidium is demonstrated by kinetic studies, equilibrium binding studies and circular dichroism spectroscopy. Electron microscopy provides a striking visualization of the dissolution of the Z* aggregate by ethidium.  相似文献   

3.
Removal of coupling factor protein (CF1) from spinach thylakoid membranes results in an enhancement of proton permeability but has no effect on chloride or potassium permeability. Anion permeability was measured by the rate of thylakoid packed volume changes. Potassium permeability was monitored by turbidity changes, packed thylakoid volume changes and ion flux studies using 86Rb+ as a tracer. 45Ca2+ was used to measure divalent cation fluxes. CF1-depleted chloroplasts had an unaltered rate of Ca2+ uptake, but the rate of Ca2+ efflux appeared to be increased. Calcium efflux rates could also be increased by the addition of a proton specific uncoupler, FCCP.  相似文献   

4.
Low concentrations (~ 3 mm) of salts of monovalent cations such as Na+, K+, and tetraethylammonium were found to decrease the turbidity of chloroplast suspensions. The turbidity changes (Δ540) had the same kinetics, salt concentration dependence, and pH dependence as the monovalent cation-induced decreases in chlorophyll a fluorescence (9), suggesting that structural changes are the cause of the associated increases in spillover. Electron microscopy revealed that the grana are stacked when spillover is inhibited (in the absence of salts or the presence of divalent cations) and that monovalent cations cause the grana to unstack, thereby promoting spillover.  相似文献   

5.
The abundance of pelagic invertebrate predators in relation to turbidity and depth gradients in Lake Hiidenvesi (southern Finland) were studied. In the shallow (<5 m) and the most turbid (up to 75 NTU) part of the lake, the community of invertebrate predators consisted of cyclopoid copepods (max biomass >500 μg dw l−1) and Leptodora kindtiii (Focke) (17 μg dw l−1), while in the less turbid (10–40 NTU) stratifying area Chaoborus flavicans (Meigen) dominated (max 146 μg dw l−1). In the temporarily stratifying and moderately turbid basin Chaoborus and small-bodied invertebrate predators co-existed. Mysis relicta (Lovén) occurred only in the stratifying area (max 15 μg dw l−1). The results suggested that both water depth and turbidity contributed to the community structure of Chaoborus flavicans. Depth great enough for stratification was of special importance and its effect was amplified by elevated turbidity, while high turbidity alone could not maintain chaoborid populations. Mysis relicta also requires a hypolimnetic refuge but is more sensitive to low oxygen concentrations and may therefore be forced to the epilimnion where it is vulnerable to fish predation. Cyclopoids as rapid swimmers can take advantage at elevated turbidity levels and coexist in high biomass with fish even in shallow water. Leptodora kindtii can form high biomass despite planktivorous fish providing that turbidity exceeds 20 NTU. The results demonstrated that depth and water turbidity can strongly regulate the abundance and species composition of invertebrate predators. These factors must thus be taken into account when applying food web management, which aims to reduce phytoplankton biomass by depressing planktivorous fish.  相似文献   

6.
Laboratory experiments were conducted to determine how larval and juvenile yellow perch Perca flavescens respond to changes in prey density when exposed to different levels and types of turbidity (phytoplanktonic or sedimentary). Across prey densities, consumption by P. flavescens tended to be less in phytoplanktonic turbidity compared with sedimentary turbidity. For larvae, this effect was dependent on turbidity level (consumption differed between turbidity types only at high turbidity), while for juveniles the difference with turbidity type was equal across turbidity levels. These results suggest that phytoplankton blooms are detrimental to the ability of late season age 0 year P. flavescens to forage and support the need to control factors leading to excessive phytoplankton growth in lakes.  相似文献   

7.
Changes in the turbidity of suspensions of bovine rod outer segment fragments induced by rhodopsin bleaching were measured in the presence of various concentrations of divalent cations at acidic pH (4.7–5.4). Unlike the situation at neutral pH, the turbidity of the suspensions increased drastically by bleaching at acidic pH. It was found that the extent of turbidity change became maximum at a particular concentration of divalent cations (i.e., 5 mM CaCl2, 5 mM MgCl2, or 5 mM mixed divalent cations). However, the turbidity increment in the presence of 5 mM MgCl2 was greatly enhanced by the addition of a minute amount of CaCl2. These results evidently show that the membrane characteristic is abruptly changed by bleaching at acidic pH in particular. It is also suggested that there are two kinds of binding sites for Ca ions: one is a Ca2+ specific site, and the other is a nonspecific site to which Mg2+ can also bind.  相似文献   

8.
Sonicated liposomes of dipalmitoyl phosphatidylcholine show sharp turbidity changes on heating at two distinct temperatures. A decrease in turbidity at the lower temperature (approx. 37°C) is thought to be associated with the phase transition of small vesicles and a decrease at about 44°C with larger vesicles or multilayer. An increase of turbidity between 38 and 43°C is attributed to the fusion of small vesicles. The turbidity changes were studied under various modes of vesicle preparation to confirm the interpretation of the turbidity data. Alternate interpretations are discussed.  相似文献   

9.
The process of platelet aggregation as detected by turbidity changes in the platelet aggregometer was studied relative to light scattering by large particles. For latex beads a plot of light scattering intensity/unit mass versus particle size gave increased light scattering intensity for small particle sizes but decreased scattering at large particle size. This behavior is predicted by Rayleigh-Gans theory. These results were related to the platelet aggregometer, an optical instrument used to measure the association of small particles (monomeric platelets) to large particles (platelet aggregates). Formalin-fixed platelets do not show changes in light transmission due to energy-requiring processes, such as shape change, so that turbidity changes in the presence of aggregating agents could be attributed to a change in platelet aggregation state. Small platelet aggregates showed increased turbidity compared to a similar mass of monomeric platelets. In fact, very large platelet aggregates that were visible to the unaided eye were needed to produce a decrease in light scattering intensity. Thus, turbidity can either increase or decrease with platelet aggregation depending on the size of the aggregates. Studies of platelet aggregation that show no initial increase in turbidity must be characterized by dominance of large platelet aggregates and monomeric platelets.  相似文献   

10.
The paper reports the measurement of biomass concentration using a laser turbidity probe. A suspension of Bakers’ yeast (0.5?50?gl-1) was subjected to various conditions of agitation and aeration in a stirred tank reactor and the turbidity measured using the probe. Both agitation and aeration were found to influence the turbidity. At any constant biomass concentration, the effect on the turbidity measurement of changing agitation or aeration rate independently was linear, while at any constant conditions of agitation and aeration rate, the relationship between turbidity and biomass concentration was non-linear. The results indicate that, in a bioprocess with non-particulate medium, it is possible to correct for the effects of aeration and agitation on turbidity measurement using a multivariate calibration model. A procedure for calibration and correction of measurements for the effects of agitation and aeration is presented and is verified using experimental data. This procedure may be generalised for other applications.  相似文献   

11.
Porcine tubulin precipitated by 10?3, m vinblastine (VLB) contains approximately 0.50 molecule of VLB bound per 110,000-molecular-weight tubulin dimer. The amount of precipitate, followed by turbidity, is a linear function of the initial tubulin concentration. The rate of precipitation is roughly first order in protein concentration. Vindoline and velbanamine halves of VLB are ineffective separately or together in producing the tubular aggregates observed for VLB precipitates by electron microscopy. At 10?3, m concentrations no turbidity is observed nor is there any competition with VLB-induced turbidity. Removal of GTP from tubulin by dialysis or incubation of tubulin in the absence of added GTP blocks VLB-induced assembly. Readdition of GTP at room temperature or above restores sensitivity to VLB precipitation. The β,γ methylene analog of GTP cannot substitute for GTP in this process. About 0.7 mol of added GTP is found bound per mole of tubulin dimer. During the course of VLB-induced assembly, roughly half of this GTP is displaced. These results show interesting similarities and differences in the VLB-induced assembly of tubulin and the normal in vitro assembly of microtubules. Further comparisons between both assembly processes should be useful.  相似文献   

12.
The autotrophic production and heterotrophic consumption of organic matter in the Westerschelde, a highly turbid and eutrophic estuary in the Southwest Netherlands is examined by means of a dynamic simulation model. The model describes the ecologically relevant processes in thirteen spatial compartments and adequately fits most observed data.Three autotrophic processes are included in the model. Net pelagic photosynthetic production is relatively low (average 41 gC m–2 yr–1) and three spatial compartments near the turbidity maximum zone are respiratory sinks of phytoplankton biomass. According to the model, net phytobenthic primary production is more important than pelagic primary production in the upstream half of the Westerschelde. On the scale of the entire estuary, benthic primary production amounts to about 60% of pelagic primary production. Water-column nitrification, which is very important in the nitrogen cycle, is most pronounced near the turbidity zone where it accounts for the major autotrophic fixation of carbon (up to 27 g C m–2 yr–1). Viewed on the scale of the total estuary, however, the process is not very important.Less than 20% of total organic carbon input to the estuary is primary produced, the remainder is imported from waste discharges and from the river.The degree of heterotrophy of the Westerschelde estuary proved to be one of the highest yet reported. On average 380 g carbon per square metre is net lost per year (range 200–1200 gC m–2 yr–1). The yearly community respiration (bacterial mineralization, respiration of higher trophic levels and sedimentation) is 4 to 35 times (estuarine mean of 6) higher than the net production. This degree of heterotrophy is highest near the turbidity maximum and generally decreases from the freshwater to the seaward boundary. About 75% of all carbon losses can be ascribed to pelagic heterotrophic processes; the sediment is only locally important.Mineralisation rates are highest in the turbidity region, but as only a fraction of total carbon resides here, less than 20% of all organic carbon is lost in this part of the estuary. This result is in contradiction with a previous budget of the estuary, based on data of the early seventies, where more than 80% of all carbon was estimated to be lost in the turbidity zone. Part of this discrepancy is probably caused by changes that have occurred in the estuary since that time.Due to the high heterotrophic activity, nearly all imported and in situ produced carbon is lost in the estuary itself and the Westerschelde is an insignificant source of organic matter to the coastal zone.The model estuary acts as a trap for reactive organic matter, both from the land, from the sea or in situ produced. Internal cycling, mainly in the water column, results in the removal of most of the carbon while the more refractory part is exported to the sea.  相似文献   

13.
Instrumentation has been developed for the rapid electronic sizing of large numbers of myofibrils. The response of myofibrils in the presence of ATP to changes in Ca++ concentration was examined. Shortening of myofibrils upon addition of Ca++ was accompanied by an increased protein effective volume of approximately 10-40%. Whereas ATPase activation and increased turbidity of myofibrils upon addition of Ca++ were reversible upon subsequent addition of EGTA, the shortening and swelling were irreversible. It is proposed that the swelling may result from the breaking of hydrophobic bonds within myosin. The ATPase activity and turbidity are measures of the input, while the shortening and swelling are measures of the output of a coupled nonequilibrium process; failure of reversal of the output indicates an uncoupling under the experimental conditions.  相似文献   

14.
The aim of this study was to assess potential impacts of water quality changes associated with floods on the occupancy of Indo‐Pacific bottlenose dolphins (Tursiops aduncus) in two subtropical estuaries in Australia. Boat‐based surveys were conducted in the Clarence River estuary (CR) and Richmond River estuaries (RR) over 3 yr. Principal components analysis (PCA) showed that when the dolphins were absent from the estuaries, three water quality components were extracted in the CR and two components in the RR. The PCA1 component included high loadings for salinity, turbidity, and pH for the CR (46%); and salinity, turbidity, pH, and dissolved oxygen (DO) for the RR (51%). Randomization tests showed that dolphins abandoned both estuaries at times of lower salinity, and during periods of higher turbidity and of lower levels of pH and dissolved oxygen in the RR that were associated with floods. The time until dolphins returned to the estuary postflood depended on the length and severity of the flood, but generally dolphins were observed in waters with salinity levels above 29‰. Their delayed return postflood could be for their physiological health, or because their prey returned to the estuaries under these higher salinity conditions, or more likely a combination of both factors.  相似文献   

15.
Although much is known about fibrin polymerization, because it is complex, the effects of various modifications are not intuitively obvious and many experimental observations remain unexplained. A kinetic model presented here that is based on information about mechanisms of assembly accounts for most experimental observations and allows hypotheses about the effects of various factors to be tested. Differential equations describing the kinetics of polymerization were written and then solved numerically. The results have been related to turbidity profiles and electron microscope observations. The concentrations of intermediates in fibrin polymerization, and fiber diameters, fiber and protofibril lengths have been calculated from these models. The simplest model considered has three steps; fibrinopeptide A cleavage, protofibril formation, and lateral aggregation of protofibrils to form fibers. The average number of protofibrils per fiber, which is directly related to turbidity, can be calculated and plotted as a function of time. The lag period observed in turbidity profiles cannot be accurately simulated by such a model, but can be simulated by modifying the model such that oligomers must reach a minimum length before they aggregate. Many observations, reported here and elsewhere, can be accounted for by this model; the basic model may be modified to account for other experimental observations. Modeling predicts effects of changes in the rate of fibrinopeptide cleavage consistent with electron microscope and turbidity observations. Changes only in the rate constants for initiation of fiber growth or for addition of protofibrils to fibers are sufficient to account for a wide variety of other observations, e.g., the effects of ionic strength or fibrinopeptide B removal or thrombospondin. The effects of lateral aggregation of fibers has also been modeled: such behavior has been observed in turbidity curves and electron micrographs of clots formed in the presence of platelet factor 4. Thus, many aspects of clot structure and factors that influence structure are directly related to the rates of these steps of polymerization, even though these effects are often not obvious. Thus, to a large extent, clot structure is kinetically determined.  相似文献   

16.
Satellite remote estimates of phycocyanin (PC) have become valuable for monitoring the quality of inland waters affected by harmful cyanobacterial blooms. In this study, we developed an algorithm for mapping turbidity as a proxy of PC content through Landsat 8 Operational Land Imager (OLI) data and in situ measurements. The chosen study site is Karaoun Reservoir, in Lebanon, a hypereutrophic freshwater body where turbidity is mostly driven by cyanobacteria. Satellite images were corrected for atmospheric effects with the 6S (Second Simulation of the Satellite Signal in the Solar Spectrum) code which proved to be more accurate than the DOS (Dark Object Subtraction) approach with R = 0.98 and R = 0.5, respectively. A strong relationship was found between turbidity and PC measurements (R = 0.92, R2 = 0.86), as well as between turbidity and the ratio of band 5 to band 4 of the OLI (R = 0.88, R2 = 0.77). Results reveal a promising performance of the algorithm for predicting PC concentrations with high correlations determined through simple linear regression analysis for both the calibration (R = 0.92, R2 = 0.85) and validation (R = 0.88, R2 = 0.78) periods. An application of the approach to a set of historical Landsat images revealed a time series of cyanobacterial bloom occurrence with high variation in surface area at the study site. The algorithm is considered to be suitable for retrieving cyanobacteria in highly eutrophic waters dominated by cyanobacteria where turbidity is mostly a function of the latter. This approach will improve monitoring cyanobacterial blooms on a spatial and timely basis.  相似文献   

17.
Thermal unfolding monitored by spectroscopy or calorimetry is widely used to determine protein stability. Equilibrium thermodynamic analysis of such unfolding is often hampered by its irreversibility, which usually results from aggregation of thermally denatured protein. In addition, heat-induced protein misfolding and aggregation often lead to formation of amyloid-like structures. We propose a convenient method to monitor in real time protein aggregation during thermal folding/ unfolding transition by recording turbidity or 90 degrees light scattering data in circular dichroism (CD) spectroscopic experiments. Since the measurements of turbidity and 90 degrees light scattering can be done simultaneously with far- or near-UV CD data collection, they require no additional time or sample and can be directly correlated with the protein conformational changes monitored by CD. The results can provide useful insights into the origins of irreversible conformational changes and test the linkage between protein unfolding or misfolding and aggregation in various macromolecular systems, including globular proteins and protein-lipid complexes described in this study, as well as a wide range of amyloid-forming proteins and peptides.  相似文献   

18.
We examined the effects of turbidity on habitat preference of juvenile Atlantic cod in the laboratory, using a shuttle box where fish could select between two different habitats. In the first experiment, we compared three turbidity levels of kaolin (3, 8 and 21 beam attenuation m−1). In the second experiment, we looked at the effect of turbidity media (kaolin versus algae), after controlling for spectral differences between turbidity media. Although cod preferred an intermediate turbidity of kaolin over low turbidity water, comparisons between low and high turbidity, and intermediate and high turbidity did not significantly influence habitat preference. Algae did not influence habitat preference by cod. Although other studies have found that turbidity affects both foraging and antipredator behaviour of juvenile cod, this study has shown that gradients in turbidity per se do not have a strong effect on their habitat preference.  相似文献   

19.
Properties of the sliding disintegration response of demembranated tetrahymena cilia have been studied by measuring the spectrophotomeric response or turbidity of cilia suspensions at a wavelength of 350 nm relative to changes in the dynein substrate (MgATP(2-)) concentration. The maximum decrease in turbidity occurs in 20 muM ATP, and 90 percent of the decrease occurs in approximately 5.9 s. At lower ATP concentrations (1-20 muM), both the velocity and magnitude of the turbidity decreases are proportional to ATP concentration. The velocity data for 20 muM ATP permit construction of a reaction velocity curve suggesting that changes in turbidity are directly proportional to the extent and velocity of disintegration. At ATP concentrations more than 20 muM (50muM to 5mM), both velocity and magnitude of the turbidimetric response are reduced by approximately 50 percent. This apparent inhibition results in a biphasic response curve that may be related to activation of residual shear resistance or regulatory components at the higher ATP concentrations. The inhibitory effects of elevated ATP can be eliminated by mild trypsin proteolysis, whereupon the reaction goes to completion at any ATP concentration. The turbidimetric responses of the axoneme-substrate suspensions are consistent with the extent and type of axoneme disintegration revealed by electron microscope examination of the various suspensions, suggesting that the turbidimetric assay may prove to be a reliable means for assessing the state of axoneme integrity.  相似文献   

20.
In prion diseases, the posttranslational modification of host-encoded prion protein PrPc yields a high β-sheet content modified protein PrPsc, which further polymerizes into amyloid fibrils. PrP106-126 initiates the conformational changes leading to the conversion of PrPc to PrPsc. Molecules that can defunctionalize such peptides can serve as a potential tool in combating prion diseases. In microorganisms during stressed conditions, small stress molecules (SSMs) are formed to prevent protein denaturation and maintain protein stability and function. The effect of such SSMs on PrP106-126 amyloid formation is explored in the present study using turbidity, atomic force microscopy (AFM), and cellular toxicity assay. Turbidity and AFM studies clearly depict that the SSMs—ectoine and mannosylglyceramide (MGA) inhibit the PrP106-126 aggregation. Our study also connotes that ectoine and MGA offer strong resistance to prion peptide-induced toxicity in human neuroblastoma cells, concluding that such molecules can be potential inhibitors of prion aggregation and toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号