首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Steady-state fluxes of 86Rb+ (as a tracer for K+) were measured in Chinese hamster ovary cells (CHO-K1) and a mutant (CR1) defective in the regulation of cholesterol biosynthesis; the membrane cholesterol content of this mutant was varied by growing it on a range of cholesterol supplements to lipid-free medium (Sinensky, M. (1978) Proc. Natl. Acad. Sci. U.S. 75, 1247–1249).Analogous to previous findings in ascites tumor cells, 86Rb+ influx in the parent strain was differentiated into a ouabain-inhibitable ‘pump’ flux, furosemide-sensitive, chloride-dependent exchange diffusion, and a residual ‘leak’ flux.On the basis of this flux characterization, 86Rb+ pump and leak fluxes were measured in the mutant as a function of membrane cholesterol content. Pump and leak fluxes, when expressed per ml cell water, were independent of the cholesterol content of the mutant. Moreover, 86Rb+ fluxes in the mutant were equal to those in the parent strain. Our data imply that the flux behavior of K+ in the steady state is independent of the ordering of membrane lipid acyl chains.  相似文献   

2.
Steady-state fluxes of 86Rb+ (as a tracer for K+) were measured in Chinese hamster ovary cells (CHO-K1) and a mutant (CR1) defective in the regulation of cholesterol biosynthesis; the membrane cholesterol content of this mutant was varied by growing it on a range of cholesterol supplements to lipid-free medium (Sinensky, M. (1978) Proc. Natl. Acad. Sci. U.S. 75, 1247--1249). Analogous to previous findings in ascites tumor cells, 86Rb+ influx in the parent strain was differentiated into a ouabain-inhibitable 'pump' flux, furosemide-sensitive, chloride-dependent exchange diffusion, and a residual 'leak' flux. On the basis of this flux characterization, 86Rb+ pump and leak fluxes were measured in the mutant as a function of membrane cholesterol content. Pump and leak fluxes, when expressed per ml cell water, were independent of the cholesterol content of the mutant. Moreover, 86Rb+ fluxes in the mutant were equal to those in the parent strain. Our data imply that the flux behavior of K+ in the steady state is independent of the ordering of membrane lipid acyl chains.  相似文献   

3.
Abstract: The effects of four K+-channel inhibitors on synaptosomal free Ca2+ concentrations and 86Rb+ fluxes are analysed. 4-Aminopyridine, α-dendrotoxin, charybdotoxin, and tetraethylammonium all increase the free Ca2+ concentration, although their potencies differ widely. In each case, the elevation in free Ca2+ concentration is reversed by the subsequent addition of tetrodotoxin. The transient 86Rb+ efflux from preequilibrated synaptosomes induced with high concentrations of veratridine is partially inhibited by 4-aminopyridine and α-dendrotoxin. In contrast, when 4-aminopyridine or α-dendrotoxin is added to polarized synaptosomes, an enhanced86Rb+ flux is seen, both for uptake and for efflux with no change in the total 86Rb+/K+ content of the synaptosomes and with only a slight time-averaged plasma membrane depolarization (6.4 and 3.3 mV, respectively). The enhancements of flux by 4-aminopyridine or α-dendrotoxin are sensitive to ouabain and/or to tetrodotoxin. Furthermore, these flux changes show the same concentration dependencies as the blocked component of veratridine-stimulated 86Rb+ efflux, the elevation of free Ca2+ concentration, and the facilitation of glutamate exocytosis that are elicited by 4-aminopyridine or α-dendrotoxin. It is concluded that these findings support the proposal of spontaneous, repetitive firing of synaptosomes evoked by K+-channel inhibitors and that the enhanced 86Rb+ flux is a consequence of the activity of 4-aminopyridine- and α-dendrotoxin-insensitive K+ channels during these action potentials.  相似文献   

4.
Interactive effects of K+ and N (principally NH4+) on plant growth and ion uptake were investigated using hydroponically grown rice (Oryza sativa L. cv. M202) seedlings by varying the availability of NH4+ or NO3? and K+ during an 18d growth period, a 3d pretreatment period and during flux measurements. Plants grew best in media containing 100 mmol m?3 NH4+ and 200mmolm?3 K+ (N100/K200), followed by N2/K200 < N100/K2 < N2/K2. 86Rb+(K+) fluxes were increased by exposure to N during the 18 d growth period and the 3 d of pretreatment, but decreased by the presence of NH4+ during flux measurements. This inhibition was a function of prior N/K provision and the [NH4+]0 present during flux determinations. NH4+ was least inhibitory to 86Rb+(K+) influx in high-N/low-K plants. Pretreatments with K+ failed to stimulate NH4+ uptake, and the presence of K+ in the uptake solutions reduced NH4+ fluxes only in high-N/low-K plants.  相似文献   

5.
The effect of cholesterol depletion on potassium tracer fluxes was studied in sheep red cells. Removal by the plasma incubation method (5, 12, 30) of approximately 31 and 34% membrane cholesterol from high-potassium (HK) and low-potassium (LK) sheep red cells, respectively, did not induce significant changes in the steady-state cation composition of these cells nor in their passive (leak) and active (pump) K+ influxes. In cholesterol-depleted LK sheep red cells, there was no impairment nor augmentation of the Lp an tibody stimulated K+ pump flux and L1-antibody-mediated reduction of K+ leak flux indicating that the removed cholesterol does not contribute to the activity of the Lp and L1 antigens.  相似文献   

6.
Influx of the K+ analogue Rb+ was measured through the ouabain-sensitive Na+/K+ pump and the ouabain-insensitive “leak” pathways in Cl? or NO in mature red cells from adult pigs and in reticulocytes naturally occurring in 7-day-old piglets. In reticulocytes, Rb+ influxes by the two pathways were of about equal magnitude in Cl? (13 and 10 mmoles/liter cells × hr) and at least 25-fold larger than in mature red cells (0.5 and 0.4 mmoles/liter cells × hr). In Na + media, a portion of the ouabain-insensitive “leak” flux of Rb+ was Cl? dependent (Rb+Cl? transport) as NO replacement reduced Rb+ influx by 90% in reticulocytes and by 40% in mature red cells. The sulfhydryl reagent N-ethylmaleimide (NEM) stimulated Rb+Cl? transport about twofold in reticulocytes and up to 13-fold in mature red cells. When reticulocytes matured to erythrocytes during in vitro incubation, about 90% of both ouabain-sensitive Rb+ pump and ouabain-insensitive Rb+Cl? influx were lost. In contrast, the NEM-stimulated Rb+Cl? transport changed much less throughout this period, suggesting an entity operationally but not necessarily structrually distinct from the basal Rb+Cl? transport. Although the experimental variability precluded a full assessment of significant changes in the small Na+/K+(Rb+) pump and Rb+Cl? fluxes in mature pig red cells kept for the same time period in vitro, Rb+ flux changes in reticulocytes appear to be maturational in nature, reflecting parallel activity transitions of Na+/K+ pump and Cl?-dependent K+ fluxes in vivo.  相似文献   

7.
Isolated muscle cells from adult rat heart have been used to study the relationship between myocardial glucose transport and the activity of the Na+/K+ pump. 86Rb+-uptake by cardiac cells was found to be linear up to 2 min with a steady-state reached by 40–60 min, and was used to monitor the activity of the Na+/K+ pump. Ouabain (10?3 mol/I) inhibited the steady-state uptake of 86Rb+ by more than 90%. Both, the ouabain-sensitive and ouabain-insensitive 86Rb+-uptake by cardiac cells were found to be unaffected by insulin treatment under conditions where a significant stimulation of 3-O-methylglucose transport occurred. 86Rb+-uptake was markedly reduced by the presence of calcium and/or magnesium, but remained unresponsive towards insulin treatment. Inhibition of the Na+/K+ pump activity by ouabain and a concomitant shift in the intracellular Na+:K+ ratio did not affect basal or insulin stimulated rates of 3-O-methylglucose transport in cardiac myocytes. The data argue against a functional relationship between the myocardial Na+/K+ pump and the glucose transport system.  相似文献   

8.
Two ionophores, monensin and salinomycin, increased total cell Na+ and ouabain-sensitive 86Rb+ uptake in cultures of smooth muscle cells from rat aorta. Monensin was used to produced graded increases in cell Na+ in order to assess the Na+ dependence of the Na+/K+ pump in the intact cell. The relationship between internal Na+ and ouabain-sensitive 86Rb+ uptake was hyperbolic (K1Na = 3 mM). Monensin did not stimulate 86Rb+ uptake in the absence of external Na+. Loading the cells with Na+ by exposing cultures to a K+-free medium for 3 hr maximally increased cell Na+ and ouabain-sensitive 86Rb+ uptake to the same extent as monensin. Total cell Na+ and pump activity in monensin-treated cells returned to the initial values after removing the ionophore. Monensin was then able to increase total cell Na+ and ouabain-sensitive 86Rb+ uptake to the same extent as the initial treatment with the ionophore.  相似文献   

9.
Electrophysiological studies on renal thick ascending limb segments indicate the involvement of a luminal Na+/K+/Cl cotransport system and a K+ channel in transepithelial salt transport. Sodium reabsorption across this segment is blocked by the diuretics furosemide and bumetanide. The object of our study has been to identify in intact membranes and reconstitute into phospholipid vesicles the Na+/K+/Cl cotransporter and K+ channel, as an essential first step towards purification of the proteins involved and characterization of their roles in the regulation of transepithelial salt transport. Measurements of 86Rb+ uptake into membrane vesicles against large opposing KCl gradients greatly magnify the ratio of specific compared to non-specific isotope flux pathways. Using this sensitive procedure, it has proved possible to demonstrate in crude microsomal vesicle preparations from rabbit renal outer medulla two 86Rb+ fluxes. (A) A furosemide-inhibited 86Rb+ flux in the absence of Na+ (K+-K+ exchange). This flux is stimulated by an inward Na+ gradient (Na+/K+ cotransport) and is inhibited also by bumetanide. (B) A Ba2+-inhibited 86Rb+ flux, through the K+ channel. Luminal membranes containing the Na+/K+/Cl cotransporter and K+ channels, and basolateral membranes containing the Na+/K+ pumps were separated from the bulk of contaminant protein by metrizamide density gradient centrifugation. The Na+/K+/Cl cotransporter and K+ channel were reconstituted in a functional state by solubilizing both luminal membranes and soybean phospholipid with octyl glucoside, and then removing detergent on a Sephadex column.  相似文献   

10.
Three cultivars of sugar beet (Beta vulgaris L.), which are sensitive to aluminium (Al) in the order Primahill > Monohill > Regina, were grown in water culture for 2 weeks. Nutrients were supplied at 15% increase of amounts daily, corresponding to the nutrient demand for maximal growth. The 2.4-dinitrophenol (DNP)-sensitive (metabolic) and DNP-insensitive (non-metabolic) uptake of aluminium, phosphate. 45Ca2+ and K+(86Rb+) in roots were measured as well as transport to shoots of intact plants. All 3 cultivars absorbed more aluminium if DNP was present during the aluminium treatment than in its absence. It is suggested that sugar beets are able to extrude aluminium activity or that they possess an active mechanism to keep Al outside the cell. The presence of Al in the medium during the 1-h experiment affected the metabolic and non-metabolic fluxes of 45Ca2+ and K+(86Rb+) in different ways. In the presence of DNP, the influx of both 45Ca2+ and K+(86Rb+) and the efflux of 45Ca2+ were inhibited by Al in a competitive way. At inhibition of 45Ca2+ influx, 2 Al ions are probably bound per Ca2+ uptake site in cv. Regina (Al-tolerant), but in cvs Primahill and Monohill only one Al ion is bound (more Al sensitive). Aluminium competitively inhibited the active efflux of 45Ca2+ (absence of DNP) in almost the same way in the 3 cultivars. In contrast, aluminium stimulated the influx of K+(86Rb+) in cvs Primahill, Monohill and Regina in the absence of DNP. Thus, the Al effects on active and passive K+(86Rb+) influx are different. The total influx of K+(86Rb+) increased in the presence of Al and might be connected to an active exclusion of Al. Regina is the least Al-sensitive cultivar, probably because Al interferes less with the Ca2+ fluxes and because this cultivar actively excludes phosphate in the presence of Al. Thus Al-phosphate precipitation within the plant could be avoided.  相似文献   

11.
Summary The movement of thallous ion (Tl+ across the ascites cell membrane has been characterized. Analogous to previous findings for86Rb+ (used as a tracer for K+),204Tl+-influx could be resolved into three components: a ouabain-inhibitable pump flux, a passive flux, and a furosemide- or NO 3 -sensitive exchange flux. Although Tl+ moved approximately nine times faster across the membrane than K+, the pump/leak ratio was equal for the two ions. This suggests that the pump- and leak-pathways share a common rate-limiting step. The exchange mechanism was shown to provide close coupling between the Tl+- and K+-gradients.  相似文献   

12.
The K+ content and the K+ flux were measured in the cell lines ME2 and MF2 isolated from plasmocytoma MOPC 173. Both cell lines were shown to have the same K+ content and the same K+ steady state flux per unit of surface area.In ME2 cells, no modification of the exchange movement was observed during contact inhibition. However, contact-inhibited cells exhibited an increased resistance to depletion, characterized by a lower K+ net movement.The (Na+ + K+)-ATPase measured in homogenates is poorly correlated to in vivo cation fluxes both because of the enhancement due, presumably, to the drop of K+ concentration on the cytoplasmic face of the membrane and because of losses during preparation which can be conspicuous, especially in contact-inhibited cells.The K+ net flux is considerably increased when the intracellular K+ level is reduced after preincubation of the cells in a K+-free medium. Thus, internal K+ seems to regulate the K+ influx.  相似文献   

13.
Fusicoccin (FC) has long been known to promote K+ uptake in higher plant cells, including stomatal guard cells, yet the precise mechanism behind this enhancement remains uncertain. Membrane hyperpolarization, thought to arise from primary H+ pumping stimulated in FC, could help drive K+ uptake, but the extent to which FC stimulates influx and uptake frequently exceeds any reasonable estimates from Constant Field Theory based on changes in the free-running membrane potential (V m) alone; furthermore, unidirectional flux analyses have shown that in the toxin K+ (86Rb+) exchange plummets to 10% of the control (G.M. Clint and E.A.C. MacRobbie 1984, J. Exp. Bot.35 180–192). Thus, the activities of specific pathways for K+ movement across the membrane could be modified in FC. We have explored a role for K+ channels in mediating these fluxes in guard cells ofVicia faba L. The correspondence between FC-induced changes in chemical (86Rb+) flux and in electrical current under voltage clamp was followed, using the K+ channel blocker tetraethylammonium chloride (TEA) to probe tracer and charge movement through K+-selective channels. Parallel flux and electrical measurements were carried out when cells showed little evidence of primary pump activity, thus simplifying analyses. Under these conditions, outward-directed K+ channel current contributed appreciably to charge balance maintainingV m, and adding 10 mM TEA to block the current depolarized (positive-going)V m; TEA also reduced86Rb+ efflux by 68–80%. Following treatments with 10 M FC, both K+ channel current and86Rb+ efflux decayed, irreversbly and without apparent lag, to 10%–15% of the controls and with equivalent half-times (approx. 4 min). Fusicoccin also enhanced86Rb+ influx by 13.9-fold, but the influx proved largely insensitive to TEA. Overall, FC promotednet cation uptake in 0.1 mM K+ (Rb+), despite membrane potentials which were 30–60 mVpositive of the K+ equilibrium potential. These results tentatively link (chemical) cation efflux to charge movement through the K+ channels. They offer evidence of an energy-coupled mechanism for K+ uptake in guard cells. Finally, the data reaffirm early suspicions that FC alters profoundly the K+ transport capacity of the cells, independent of any changes in membrane potential.Abbreviations and symbols E K equilibrium potential for K+ - FC fusicoccin - Hepes 4-(2-hydroxyethyl)-1-piperazineeth-anesulfonic acid - G m membrane (slope) conductance atV m - I-V current-voltage (relationship) - apparent rate constant for exchange - K i + , K 0 + intracellular, extracellular K+ (concentration) - TEA tetraethylammonium chloride - V m free-running membrane potential (difference)  相似文献   

14.
The K+, Na+, and Cl balance and K+ (Rb+) and 36Cl fluxes in U937 cells induced to apoptosis by 0.2 or 1 μM staurosporine were studied using flame emission and radioisotope techniques. It is found that two-thirds of the total decrease in the amount of intracellular osmolytes in apoptotic cells is accounted for by monovalent ions and one-third consists of other intracellular osmolytes. A decrease in the amount of monovalent ions results from a decrease in the amount of K+ and Cl and an increase in the Na+ content. The rate of 36Cl, Rb+ (K+), and 22Na+ equilibration between cells and the medium was found to significantly exceed the rate of apoptotic change in the cellular ion content, which indicates that unidirectional influxes and effluxes during apoptosis may be considered as being in near balance. The drift of the ion flux balance in apoptosis caused by 0.2 μM staurosporine was found to be associated with the increased ouabain-resistant Rb+ (K+) channel influx and insignificantly altered the ouabain-sensitive pump influx. Severe apoptosis induced by 1 μM staurosporine is associated with reduced pump fluxes and slightly changed channel Rb+ (K+) fluxes. In apoptotic cells, the 1.4–1.8-fold decreased Cl level is accompanied by a 1.2–1.6-fold decreased flux.  相似文献   

15.
The classic compartment analysis of ion efflux from roots is often applied with the assumption that there is a system of 3 compartments in series. However, complex ion transport across the root tissues, as well as influences from the shoot, may complicate the picture. The present experiments were performed to study the immediate effects that excision of the shoot before the experiment exerts on the efflux of Rb+(86Rb+) and of K+(86Rb+) from 9-day-old roots of plants of barley (Hordeum vulgare L. cv. Salve). The efflux from high K+ and low K+ roots of intact and detopped plants were compared. After excision of the shoot of high K+ plants, a marked increase in efflux was observed after 2.5 h with a maximum at about 7 h. The increase in efflux was seen as a peak in plots of efflux versus time. Excision of the shoot from low K+ roots did not give rise to a consistent increase in efflux. Regular K+ ion efflux curves were observed from roots of intact plants of high or low K+ status. Furthermore, after a pulse treatment of 9-day-old roots of intact plants of high or low K+ status with a solution containing Rb+(86Rb+), the Rb+(86Rb+) transport to the shoots was not reduced during the following 3 h in unlabelled solution. It is suggested that both the peak appearing in the efflux plots and the maintained tracer transport to the shoots after transfer of the roots to an unlabelled solution indicate the existence of a K+/Rb+ transport system in the symplasm of the roots that has only a slow exchange with the bulk cytoplasm and vacuoles.  相似文献   

16.
The valinomycin-induced K+ and Rb+ permeability in cells of Acholeplasma laidlawii B differing in fatty acid and cholesterol content was studied using three different techniques: (i) by following the swelling of the cells in potassium acetate optically; (iii) by recording the efflux of K+ using a potassium-selective glass electrode; and (ii) by measuring the efflux of Rb+ (after preincubation of the cells with 86Rb+) with a filter technique.If unsaturation of the membrane lipids was increased, the permeability was found to increase. Cholesterol appeared to cause a slight decrease in permeability.The valinomycin-induced efflux of K+ is gradually reduced when the temperature is lowered and becomes zero below the gel-liquid crystalline phase transition.  相似文献   

17.
18.
The balance of K+, Na+, and Cl fluxes across the cell membrane with the Na+/K+ pump, ion channels, and Na+K+2Cl (NKCC) and Na+-Cl (NC) cotransport was calculated to determine the mechanism of cell shrinkage in apoptosis. It is shown that all unidirectional K+, Na+, and Cl fluxes; the ion channel permeability; and the membrane potential can be found using the principle of the flux balance if the following experimental data are known: K+, Na+, and Cl concentrations in cell water; total Cl flux; total K+ influx; and the ouabain-inhibited pump component of the Rb+(K+) influx. The change in different ionic pathways during apoptosis was estimated by calculations based on the data reported in the preceded paper (Yurinskaya et al., 2010). It is found that cell shrinkage and the shift in ion balance in U937 cells induced to apoptosis with 1 μM staurosporine occur due to the coupling of reduced pump activity with a decrease in the integral permeability of Na+ channels, whereas K+ and Cl channel permeability remains almost unchanged. Calculations show that only a small part of the total fluxes of K+, Na+, and Cl account for the fluxes mediated by NKCC and NC cotransporters. Despite the importance of cotransport fluxes for maintaining the nonequilibrium steady-state distribution of Cl, they cannot play a significant role in apoptotic cell shrinkage because of their minority and cannot be revealed by inhibitors.  相似文献   

19.
Bcl-2 overexpression in transfected PW cells is associated with inhibition of radiation-induced programmed cell death (PCD). We have previously reported that there is a relationship between inhibition of radiation-induced PCD and membrane hyperpolarization in these cells. In this article, we report that Na+/K+-ATPase pump activity, as measured by the uptake of Rubidium-86 (86Rb+), is significantly higher in Bcl-2 overexpressing PW cells than in control PW cells, and that pump activity following irradiation with doses ≥ 500 cGy was reduced to a lesser extent in the Bcl-2 transfectants than in the control cells. When PW-Bcl-2 cells were incubated with a dose of ouabain (1 μM) that decreased pump activity significantly, but did not induce PCD, the previously reported protection from radiation-induced PCD associated with overexpression of Bcl-2 no longer existed. In order to demonstrate that reactive oxygen species (ROS) affected Na+/K+-ATPase pump activity, cells were incubated with N-acetyl cysteine (NAC) prior to irradiation, or treated with the ROS generating drug buthionine sulphoxamine (BSO). 86Rb+uptake was significantly higher in irradiated cells incubated with NAC compared to cells irradiated in the absence of NAC, while BSO resulted in lower levels of 86Rb+uptake, suggesting that the effects of radiation on the Na+/K+-ATPase pump were due to ROS. Furthermore, the resting cell membrane potential of cells exposed to NAC were slightly hyperpolarized compared to control PW cells, whereas cells exposed to BSO were depolarized in comparison to control PW cells. In summary, this data suggests that Bcl-2 affects Na+/K+-ATPase pump activity, which is associated with the resting membrane potential and the level of susceptibility to radiation-induced PCD. J. Cell. Physiol. 171:299–304, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
Steady state kinetics were used to examine the influence of Cd2+ both on K+ stimulation of a membrane-bound ATPase from sugar beet roots (Beta vulgaris L. cv. Monohill) and on K+(86Rb+) uptake in intact or excised beet roots. The in vitro effect of Cd2+ was studied both on a 12000–25000 g root fraction of the (Na++K++Mg2+)ATPase and on the ATPase when further purified by an aqueous polymer two-phase system. The observed data can be summarized as follows: 1) Cd2+ at high concentrations (>100 μM) inhibits the MgATPase activity in a competitive way, probably by forming a complex with ATP. 2) Cd2+ at concentrations <100 μM inhibits the specific K+ activation at both high and low affinity sites for K+. The inhibition pattern appears to be the same in the two ATPase preparations of different purity. In the presence of the substrate MgATP, and at K+ <5 mM, the inhibition by Cd2+ with respect to K+ is uncompetitive. In the presence of MgATP and K+ >10 μM, the inhibition by Cd2+ is competitive. 3) At the low concentrations of K+, Cd2+ also inhibits the 2,4-dinitrophenol(DNP)-sensitive (metabolic) K+(86Rb+) uptake uncompetitively both in excised roots and in roots of intact plants. 4) The DNP-insensitive (non metabolic) K+(86Rb+) uptake is little influenced by Cd2+. As Cd2+ inhibits the metabolic uptake of K+(86Rb+) and the K+ activation of the ATPase in the same way at low concentrations of K+, the same binding site is probably involved. Therefore, under field conditions, when the concentration of K+ is low, the presence of Cd2+ could be disadvantageous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号