首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of internally applied 1 mM vanadate on the Na+ efflux in dialysed squid axons were found to depend on the presence of external K+. In K+-free artificial sea water, vanadate did not produce any change in the rate of Na+ efflux, whereas in the presence of 10 mM K+ the Na+ efflux was reduced to values even lower than those observed in the absence of K+ (inversion of the K+-free effect). In vanadate-poisoned axons, K+ and NH+4 at low concentrations activated Na+ efflux, but at high concentrations both cations were inhibitory. However, NH+4 was always a better activator and a poorer inhibitor than K+.  相似文献   

2.
Using dialysed squid axons we have been able to control internal and external ionic compositions under conditions in which most of the Na+ efflux goes through the Na+ pump. We found that (i) internal K+ had a strong inhibitory effect on Na+ efflux; this effect was antagonized by ATP, with low affinity, and by internal Na+, (ii) a reduction in ATP levels from 3 mM to 50 μM greatly increased the apparent affinity for external K+, but reduced its effectiveness compared with other monovalent cations, as an activator of Na+ efflux, and (iii) the relative effectiveness of different K+ congeners as external activator of the Na+ efflux, though affected by the ATP concentration, was not affected by the Na+/+ ratio inside the cells. These results are consistent with the idea that the same conformation of the (Na+ + K+)-ATPase can be reached by interaction with external K+ after phosphorylation and with internal K+ before rephosphorylation. They also stress a nonphosphorylating regulatory role of ATP.  相似文献   

3.
The components of magnesium efflux in squid axons have been studied under internal dialysis and voltage clamp conditions. The present report rules out the existence of an ATP-dependent, Na0- and Mg0-independent Mg2+ efflux (ATP-dependent Mg2+ pump) leaving the Mg2+---Na+ exchange system as the only mechanism for Mg2+ extrusion. The main features of the Mg2+ efflux are: (1) The efflux is completely dependent on ATP. (2) The efflux can be activated either by external Na+ (forward Mg2+---Na+ exchange) or external Mg2+ (Mg2+---Mg2+ exchange). (3) The mobility of the Mg2+ exchanger in the Na0+-loaded form is greater than that in the Mg2+-loaded one. (4) In variance with the Na+---Ca2+ exchange mechanism, Mg2+---Mg2+ exchange is not activated by external monovalent cations. (5) ATPγS replaces ATP in activating Mg2+---Na+ exchange suggesting that a phosphorylation/dephosphorylation process regulates this transport mechanism.  相似文献   

4.
Intracellular vanadate at a concentration of 100 μM inhibits the uncoupled efflux of Ca2+ from intact axons but has little effect on the exchange fluxes and on the Ca2+-dependent Na+ efflux. External vanadate has no effect on the Ca2+ efflux. In addition and most importantly intracellular vanadate inhibits the Ca2+ efflux in the presence of external Na+ and Ca2+ suggesting that the uncoupled efflux is operative under physiological conditions. Measurements of the net movements of Ca2+ under near physiological conditions have confirmed this conclusion.  相似文献   

5.
(1) Vanadate (VO3?) fully inhibits the ATP-dependent uncoupled Ca efflux (Ca pump) in dialyzed squid axons. (2) Vanadate inhibits with high affinity. The mean apparent affinity (K12) obtained was 7 μM. (3) Inhibition by vanadate is dependent on Cao. External Ca lead to a release of the inhibitory effect. (K12 ≈ 3 mM). This antagonic effect can be reverted by increasing the vanadate concentration. Internal K+ increases the affinity of the intracellular vanadate binding site. External K+ has no effect on the inhibition. (4) Vanadate has no effect on the Nao-dependent Ca efflux component (forward Na-Ca exchange) in the absence of ATP. In axons containing ATP vanadate modified this component.  相似文献   

6.
Activation kinetics of the sodium and potassium conductances were re-examined in fresh axons of Loligo forbesi exhibiting very little if any potassium accumulation and a very small leak conductance, special attention being paid to the initial lag phase which precedes the turning-on of the conductances. The axons were kept intact and voltage-clamped at 2–3°C.In all cases, the rising phase of the currents could be fitted with very good accuracy using the Hodgkin-Huxley (1952) equations although, in most cases, the turning-on of the conductance did not coincide with the beginning of the depolarizing test pulse. The delay which separates the change in potential and the turning-on of current (the activation delay) was analyzed quantitatively for different prepulse and pulse potentials. The measured activation delay differed significantly from the delay predicted by the original HH equations. This difference (the non-HH delay) varied with prepulse and pulse potentials. For the potassium current, the relationship between the non-HH delay and pulse potential for a constant prepulse was bell shaped, the maximum value (0.7 ms for a prepulse to –80 mV) being reached for about 0 mV For this same current, the relationship between the non-HH delay and the prepulse potential for a constant pulse potential was sigmoidal, starting from a minimum value of around 0.5 ms at –100 mV and rising to 5 ms at –15 mV Essentially similar results were obtained for the sodium current although the non-HH delay was three to five times smaller and the dependency upon prepulse potential not significant. These results are in agreement with previous observations on squid axons and frog nodes of Ranvier and suggest that the opening of an ionic channel is preceded by a short but essential voltage-dependent conformational change of the channel protein. Offprint requests to: Y. Pichon  相似文献   

7.
A particulate (Na + K)-ATPase preparation from dog kidney bound [48V]-ortho-vanadate rapidly at 37°C through a divalent cation-dependent process. In the presence of 3 mM MgCl2 theK d was 96 nM; substituting MnCl2 decreased theK d to 12 nM but the maximal binding remained the same, 2.8 nmol per mg protein, consistent with 1 mol vanadate per functional enzyme complex. Adding KCl in the presence of MgCl2 increased binding, with aK 0.5 for KCl near 0.5 mM; the increased binding was associated with a drop inK d for vanadate to 11 nM but with no change in maximal binding. Adding NaCl in the presence of MgCl2 decreased binding markedly, with anI 50 for NaCl of 7 mM. However, in the presence of MnCl2 neither KCl nor NaCl affected vanadate binding appreciably. Both the nonhydrolyzable, ,-imido analog of ATP and nitrophenyl phosphate, a substrate for the K-phosphatase reaction that this enzyme also catalyzes, decreased vanadate binding at concentrations consistent with their acting at the low-affinity substrate site of the enzyme; the presence of KCl increased the concentration of each required to decrease vanadate binding. Oligomycin decreased vanadate binding in the presence of MgCl2, whereas dimethyl sulfoxide and ouabain increased it. With inside-out membrane vesicles from red blood cells vanadate inhibited both the K-phosphatase and (Na + K)-ATPase reactions; however, with the K-phosphatase reaction extravesicular K+ (corresponding to intracellular K+) both stimulated catalysis and augmented vanadate inhibition, whereas with the (Na + K)-ATPase reaction intravesicular K+ (corresponding to extracellular K+) both stimulated catalysis and augmented vanadate binding.  相似文献   

8.
Resting membrane potential and intracellular sodium and potassium concentrations were determined at 5 and 21°C in normal and veratridine-treated axons of the squid Doryteuthis plei. 300 μM veratridine produced an increase in the intracellular sodium concentration, which changed from 52 to 284 mM in 10 min of exposure at 21°C, and from 76 to 260 mM at 5°C. Under the same treatment the intracellular potassium concentration changed from 357 to 221 mM (21°C) and from 334 to 194 mM (5°C). All the changes could be prevented by adding 1 μM tetrodotoxin. Veratridine (30, 100 and 300 μM) increased the resting sodium permeability of the giant axon, and the effect was greater at 21°C. The affinity of the membrane for veratridine increases when the nerves are cooled, the three concentrations tested produce maximum activation of the sodium channels at 5°C. But only the higher two concentrations are saturating at 21°C.  相似文献   

9.
10.
E Leneveu  M Simonneau 《FEBS letters》1986,209(2):165-168
Using patch-clamp techniques, a study was made of the component of Leiurus quinquestriatus scorpion venom which caused a blockade of one class of membrane potassium channels, the calcium activated potassium (BK) channels. This blockade was obtained on channels in their native lipidic environment and was specific for this class of channels as other types of potassium channels were not affected by this venom.  相似文献   

11.
Summary Scanning electron microscopy and the penetration of horseradish peroxidase, especially from the ventricular surface, has been utilized to determine the distinctive properties of the posterior portion of the area postrema. This part of the organ is characterized by a non-ciliated surface composed of flattened cells, which appear less permeable to cisternally injected peroxidase than the ciliated ependymal cells covering the anterior part of the area postrema. However, more diffuse and rapid penetration of peroxidase into the posterior region is achieved by way of the perivascular spaces which appear in direct communication with the CSF. No such filling is noted in the anterior area postrema. The posterior portion also contains cells which appear to be rapidly penetrated by horseradish peroxidase and which may be important as a sensing mechanism. The chief distinction of the anterior part of the area postrema appears to be the presence of vascular connections with the choroid plexus.This work has been supported in part by Grant NB08549-02 from the National Institute of Neurological Diseases and Stroke and Health Science Advancement Award F-304-FR06115.  相似文献   

12.
(1) Vanadate (pentavalent vanadium) inhibits with high affinity (K0.5 = 3 μM) the ATP-dependent Ca2+ efflux in reconstituted ghosts from human red cells. (2) To inhibit Ca2+ efflux vanadate has to have access to the inner surface of the cell membrane. (3) The inhibitory effect of vanadate is potentiated by intracellular Mg2+ and by intracellular K+. (4) Ca2+ in the external medium antagonizes the inhibitory effect of vanadate.  相似文献   

13.
14.
Studies of unidirectional Cl-, Na+, and K+ effluxes were performed on isolated, internally dialyzed squid giant axons. The studies were designed to determine whether the coupled Na/K/Cl co-transporter previously identified as mediating influxes (Russell. 1983. Journal of General Physiology. 81:909-925) could also mediate the reverse fluxes (effluxes). We found that 10 microM bumetanide blocked 7-8 pmol/cm2 X s of Cl- efflux from axons containing ATP, Na+, and K+. However, if any one of these solutes was removed from the internal dialysis fluid, Cl- efflux was reduced by 7-8 pmol/cm2 X s and the remainder was insensitive to bumetanide. About 5 pmol/cm2 X s of Na+ efflux was inhibited by 10 microM bumetanide in the continuous presence of 10(-5) M ouabain and 10(-7) M tetrodotoxin if Cl-, K+, and ATP were all present in the internal dialysis fluid. However, the omission of Cl- or K+ or ATP reduced the Na+ efflux, leaving it bumetanide insensitive. K+ efflux had to be studied under voltage-clamp conditions with the membrane potential held at -90 mV because the dominant pathway for K+ efflux (the delayed rectifier) has a high degree of voltage sensitivity. Under this voltage-clamped condition, 1.8 pmol/cm2 X s of K+ efflux could be inhibited by 10 microM bumetanide. All of these results are consistent with a tightly coupled Na/K/Cl co-transporting efflux mechanism. Furthermore, the requirements for cis-side co-ions and intracellular ATP are exactly like those previously described for the coupled Na/K/Cl influx process. We propose that the same transporter mediates both influx and efflux, hence demonstrating "reversibility," a necessary property for an ion-gradient-driven transport process.  相似文献   

15.
16.
The effect on Na+ efflux of removal of intracellular Mg2+ was studied in squid giant axons dialyzed without internal Ca2+. In the absence of Mg2i+, ATP was unable to stimulate any efflux of Na+ above the baseline of about 1 pmol . cm-2 . s-1. This behavior was observed in otherwise normal axons and in axons poisoned with 50 microM strophanthidin in the sea water. Reinstatement of 4 mM MgCl2 in excess to ATP in the dialysis solution brought about the usual response of Na+ efflux to ATP, external K+ and strophanthidin. The present experiments show that, regardless of the mechanism for the ATP-dependent Na+ efflux in strophanthidin-poisoned axons, this type of flux shares with the active Na+ extrusion the need for the simultaneous presence of intracellular ATP and Mg2+.  相似文献   

17.
Dryer SE 《Neuron》2003,37(5):727-728
Progress in understanding sodium-activated potassium channels (K(Na)), suggested to function in excitable cells both during physiological conditions and protectively during hypoxia, has been limited by their unknown molecular identity. In this issue of Neuron, Salkoff and coworkers now show that members of the Slo gene family, Slo2.1 and Slo2.2, encode functional K(Na) channels.  相似文献   

18.
19.
A glycopeptide fraction containing glucuronic acid as a component sugar was extracted and purified from squid cartilage to give a single band migrating much slower than hyaluronic acid in cellulose acetate electrophoresis. The molecular weight of the glycopeptide was fairly large since its Kav value in Sephadex G-200 chromatography was 0.18; however, it was soluble in 66% ethanol. This glycopeptide contained glucuronic acid, glucosamine, galactosamine, galactose, and fucose. The total amino acid content was 1.87 μmol of amino acid per mg of the glycopeptide. Threonine, serine and proline represented 80% of the amino acids. Digestion with chondroitinase ABC or reaction with nitrous acid did not result in degradation of the glycopeptide; however, it was completely degraded by reaction with 0.5 M KOH at 37°C. Two hexasaccharides were separated from the alkaline degradation products, and they both contained glucuronic acid, fucose, galactosamine, and reducing terminal glucosamine in the molar ratio, 2:1:2:1. These results indicated that the glycopeptide contains glucuronic acid-containing sugar chains that are distinct from any known glycosaminoglycan.  相似文献   

20.
Using dialysed squid axons we have been able to control internal and external ionic compositions under conditions in which most of the Na+ efflux goes through the Na+ pump. We found that (i) internal K+ had a strong inhibitory effect on Na+ efflux; this effect was antagonized by ATP, with low affinity, and by internal Na+, (ii) a reduction in ATP levels from 3 mM to 50 microM greatly increased the apparent affinity for external K+, but reduced its effectiveness compared with other monovalent cations, as an activator of Na+ efflux, and (iii) the relative effectiveness of different K+ congeners as external activator of the Na+ efflux, though affected by the ATP concentration, was not affected by the Na+/K+ ratio inside the cells. These results are consistent with the idea that the same conformation of the (Na+ + K+)-ATPase can be reached by interaction with external K+ after phosphorylation and with internal K+ before rephosphorylation. They also stress a nonphosphorylating regulatory role of ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号