首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A microsomal fraction from canine brain gray matter has been extracted with the detergent sodium dodecyl sulfate to partially purify the membrane bound Na+ + K+)-stimulated adenosine triphosphatase. Phospholipid, glycolipid, and a family of other glycoproteins are also enriched by the procedure; it is proposed that the product is an intrinsic membrane protein fraction. 6–8-fold purification of (Na+ + K+)-ATPase is obtained without solubilizing the enzyme and without irreversibly altering its turnover number. Final specific activities are 350–400 μmol of ATP hydrolyzed/h per mg protein. The stimulation and reversible inactivation of the (Na+ + K+)-ATPase by dodecyl sulfate were examined for information relevant to the mechanism of action of the detergent.  相似文献   

2.
Diketocoriolin B, a sesquiterpene antitumor antibiotic, inhibits particulate (Na+ + K+-ATPase (ATP phosphohydrolase, EC 3.6.1.3) of Yoshida sarcoma cells competitively, with respect to ATP, and uncompetitively with respect to Na+ and K+. The inhibition is reduced by the addition of phosphatidylserine.Rat brain (Na+ + K+-ATPase, which is solubilized by deoxycholate and requires phosphatidylserine for its activity, is also inhibited by diketocoriolin B competitively with respect to ATP and the inhibition was reversed by increasing the concentration of phosphatidylserine.However, several differences are found between the solubilized and particulate systems: (a) 2 moles of diketocoriolin B interact with the former, while only one mole interacts with the latter, (b) K+-dependent phosphatase activity of the former requires phospholipid and is sensitive to diketocoriolin B while the reverse is true with the latter.Based on these kinetic studies, it is supported that (Na+ + K+)-ATPase has two binding sites for phospholipid, one being essential for K+-dependent phosphatase activity and when these two sites are filled with the appropriate phospholipids, ATP can bind to the enzyme.  相似文献   

3.
Interaction of lectins with a detergent-solubilized ATPase from eel electric organ was studied. Concanavalin A, which binds to α-mannosides, altered the rate of enzyme migration in agar and inhibited the formation of an antigen-antibody precipitate; other lectins had no such effects. Concanavalin A similar amounts partially inhibited (Na+ + K+)-ATPase; this inhibition was reversible by α-methylglucoside. There was no corresponding effect of concanavalin A on the potassium p-nitrophenyl-phosphatase. Concanavalin A also did not interfere with ouabain binding. Thus, concanavalin A binds to an antigenic region also involved in Na+ and/or ATP binding, but does not interact with a K+ site.  相似文献   

4.
Incubation of rabbit kidney microsomes with pig pancreatic phospholipase A2 produced residual membrane preparations with very low (Na+ + K+)-ATPase activity. The activity could be restored by recombination with lipid vesicles of negatively-charged glycerophospholipids. Vesicles of pure phosphatidylcholine and phosphatidylethanolamine were virtually inactive in this respect, but could reactivate in the presence of cholate.Incubation of the microsomes with a combination of phospholipase C (Bacillus cereus) and sphingomyelinase C (Staphylococcus aureus) resulted in 90–95% release of the phospholipids. The residual membrane contained only phosphatidylinositol and still showed 50–100% of the (Na+ + K+)-ATPase activity.  相似文献   

5.
Structural changes in the purified (Na+ + K+)-ATPase accompanying detergent inactivation were investigated by monitoring changes in light scattering, intrinsic protein fluorescence, and tryptophan to β-parinaric acid fluorescence resonance energy transfer. Two phases of inactivation were observed using the non-ionic detergents, digitonin, Lubrol WX and Triton X-100. The rapid phase involves detergent monomer insertion but little change in protein structure or little displacement of closely associated lipids as judged by intrinsic protein fluorescence and fluorescence resonance energy transfer. Lubrol WX and Triton X-100 also caused membrane fragmentation during the rapid phase. The slower phase of inactivation results in a completely inactive enzyme in a particle of 400 000 daltons with 20 mol/mol of associated phospholipid. Fluorescence changes during the course of the slow phase indicate some dissociation of protein-associated lipids and an accompanying protein conformational change. It is concluded that non-parallel inhibition of (Na+ + K+)-ATPase and p-nitrophenylphosphate activity by digitonin (which occurs during the rapid phase of inactivation) is unlikely to require a change in the oligomeric state of the enzyme. It is also concluded that at least 20 mol/mol of tightly associated lipid are necessary for either (Na+ + K+)-ATPase or p-nitrophenylphosphatase activity and that the rate-limiting step in the slow inactivation phase involves dissociation of an essential lipid.  相似文献   

6.
7.
8.
9.
(1) A (K+ + H+)-ATPase preparation from porcine gastric mucosa is solubilized in sodium dodecyl sulfate, and is subjected to gel filtration. (2) A main subunit fraction is obtained, which is a protein carbohydrate lipid complex, containing 88% protein, 7% carbohydrate and 5% phospholipid. The detailed composition of the protein and carbohydrate moieties are reported. (3) Sedimentation analysis of the subunit preparation, after detergent removal, reveals no heterogeneity, but the subunits readily undergo aggregation. (4) Acylation of the subunit preparation with citraconic anhydride causes a clear shift of the band obtained after SDS gel electrophoresis, but the absence of broadening and splitting of the band pleads against subunit heterogeneity. (5) Treatment of the subunit preparation with dansyl chloride indicates that the NH2 terminus is blocked, which favors the assumption of homogeneity of the protein. (6) Binding studies with concanavalin A indicate that at least 86% of the subunit preparation is composed of glycoprotein. (7) These findings, taken together, strongly suggest that there is a single subunit which is a glycoprotein and which represents the catalytic subunit of the enzyme. From sedimentation equilibrium analysis a molecular mass value of 119 kDa (S.E. 3, n = 6) is calculated for protein + carbohydrate and of 110 kDa (S.E. 3, n = 6) for protein only. (8) In combination with the molecular mass of 444 kDa (S.E. 10, n = 4) obtained for the intact enzyme by radiation inactivation we conclude that the enzyme appears to be composed of a homo-tetramer of catalytic subunits.  相似文献   

10.
Inhibition of the (Na+ + K+)-dependent ATPase by inorganic phosphate, Pi, was examined in terms of product inhibition of the various activities catalyzed by an enzyme preparation from rat brain, and considered in terms of the specific transport processes of the membrane Na+,K+-pump that these activities reflect. The K+-dependent phosphatase activity of the enzyme was most sensitive to Pi, and inhibition was competitive toward the substrate, nitrophenyl phosphate, as would be expected if Pi were released from the same enzyme form that bound substrate. However, this enzymatic activity does not seem to represent a transport process, and thus a cyclical discharge of K+ may not be involved. The Na+-dependent exchange activity was unaffected by Pi, in accord with the absence of Pi release in the reaction sequence. For the corresponding Na+/Na+ exchange function of the pump, which reportedly does not involve ATP hydrolysis either, prior release of Pi obviously cannot be required for Na+ discharge. With the Na+-dependent ATPase activity, measured using micromolar concentrations of ATP, Pi inhibited, but far less than with the phosphatase activity, and inhibition was not competitive toward ATP. Moreover, inhibition decreased as the Na+ concentration was raised from 10 to 100 mM. This elevated concentration of Na+ also led to substrate inhibition. For this ATPase activity, and the corresponding transport process, uncoupled Na+ efflux, the findings suggest that Na+ discharge follows Pi release, in contrast to Na+/Na+ exchange. The (Na+ + K+)-dependent ATPase activity, measured with millimolar concentrations of ATP and reflecting the coupled Na+,K+-transport function, was similarly sensitive to Pi, and again inhibition was not competitive toward ATP. However, in this case inhibition did not increase as the Na+ concentration was lowered. For this activity, and the associated transport process, the site of Na+ discharge in the overall reaction sequence remains unresolved.  相似文献   

11.
12.
(1) A quantitative study has been made of the binding of ouabain to the (Na+ + K+)-ATPase in homogenates prepared from brain tissue of the hawk moth, Manduca sexta. The results have been compared to those obtained in bovine brain microsomes. (2) The insect brain (Na+ + K+)-ATPase will bind ouabain either in the presence of Mg2+ and Pi, (‘Mg2+, Pi’ conditions) or in the presence of Na+, Mg2+, and an adenine nucleotide (‘nucleotide’ conditions) as is the case for the bovine brain (Na+ + K+)-ATPase. The binding conditions did not alter the total number of receptor sites measured at high ouabain concentrations in either tissue. (3) Potassium ion decreases the affinity (increases the KD) of ouabain to the M. sexta brain (Na+ + K+)-ATPase under both binding conditions. However, ouabain binding is more sensitive to K+ inhibition under the nucleotide conditions. In bovine brain ouabain binding is equally sensitive to K+ inhibition under the both conditions. (4) The enzyme-ouabain complex has a rate of dissociation that is 10-fold faster in the M. sexta preparation than in the bovine brain preparation. Because of this, the M. sexta (Na+ + K+)-ATPase has a higher KD for ouabain binding and is less sensitive to inhibition by ouabain than the bovine brain enzyme. (5) This data supports the hypothesis that two different conformational states of the M. sexta (Na+ + K+)-ATPase can bind ouabain.  相似文献   

13.
The action of ATP and its analogs as well as the effects of alkali ions were studied in their action on the ouabain receptor. One single ouabain receptor with a dissociation constant (KD) of 13 nM was found in the presence of (Mg2+ + Pi) and (Na+ + Mg2+ + ATP). pH changes below pH 7.4 did not affect the ouabain receptor. Ouabain binding required Mg2+, where a curved line in the Scatchard plot appeared. The affinity of the receptor for ouabain was decreased by K+ and its congeners, by Na+ in the presence of (Mg2+ + Pi), and by ATP analogs (ADP-C-P, ATP-OCH3). Ca2+ antagonized the action of K+ on ouabain binding. It was concluded that the ouabain receptor exists in a low affinity (Rα) and a high affinity conformational state (Rβ). The equilibrium between both states is influenced by ligands of (Na+ + K+)-ATPase. With 3 mM Mg2+ a mixture between both conformational states is assumed to exist (curved line in the Scatchard plot).  相似文献   

14.
Microelectrophoretic studies of the binding of a number of commonly used hydrophobic amine drugs to liposomes demonstrated the existence of relatively large surface potentials associated with binding of the protonated forms of the drugs. A theoretical treatment based on Langmuir adsorption isotherms and the Gouy-Chapman theory of the diffuse double layer allows estimation of drug-binding constants from electrophoretic mobility data. Such constants allow calculation of the charge effects arising from drug binding in more complex membrane systems, and it is shown that shifts in the apparent Ca2+ affinity of the (Ca2+ + Mg2+)-ATPase of sarcoplasmic reticulum in the presence of hydrophobic amine drugs are readily explicable in terms of the electrostatic effects of drug binding.  相似文献   

15.
(1) A membrane fraction enriched in (Na+ + K+)-ATPase (EC 3.6.1.3) was obtained from optic ganglia of the squid (Loligo pealei) by density gradient fractionation of membranes followed by treatment with either SDS or Brij-58. The resulting membrane had an (Na+ + K+)-ATPase specific activity of approx. 2 units/mg and was >95% ouabain-sensitive. (2) The (Na+ + K+)-ATPase had a Km for ATP of 0.42 ± 0.04 mM and a pH optimum of 7.0. It was inhibited by ouabain with a Ki of 0.32 ± 0.04 μM. (3) Optimum monovalent cation concentrations were: 240 mM NaCl, 60 mM KCl, tested with NaCl + KCl = 300 mM. (4) The Mg2+ dependence of hydrolysis varied with the absolute ATP concentration. At 3 mM ATP, theKm for Mg2+ was 0.86 ± 0.10 mM, and at 6 mM ATP, the Km was 1.86 ± 0.44 mM. High levels of Mg2+ caused inhibition of hydrolysis. (5) The interactions of Na+ and K+ were examined over a range of conditions. K+ levels caused modulations in the Na+ dependence in the range of 1–150 mM. (6) The (Na+ + K+)-ATPase prepared from squid optic ganglion displays properties similar to those of the sodium pump in injected nerves.  相似文献   

16.
The interaction between the (Na+ + K+)-ATPase and the adenylate cyclase enzyme systems was examined. Cyclic AMP, but not 5′-AMP, cyclic GMP or 5′-GMP, could inhibit the (Na+ + K+)-ATPase enzyme present in crude rat brain plasma membranes. On the other hand, the cyclic AMP inhibition could not be observed with purified preparations of (Na+ + K+)-ATPase enzyme. Rat brain synaptosomal membranes were prepared and treated with either NaCl or cyclic AMP plus NaCl as described by Corbin, J., Sugden, P., Lincoln, T. and Keely, S. ((1977) J. Biol. Chem. 252, 3854–3861). This resulted in the dissociation and removal of the catalytic subunit of a membrane-bound cyclic AMP-dependent protein kinase. The decrease in cyclic AMP-dependent protein kinase activity was accompanied by an increase in (Na+ + K+)-ATPase activity. Exposure of synaptosomal membranes containing the cyclic AMP-dependent protein kinase holoenzyme to a specific cyclic AMP-dependent protein kinase inhibitor resulted in an increase in (Na+ + K+)-ATPase enzyme activity. Synaptosomal membranes lacking the catalytic subunit of the cyclic-AMP-dependent protein kinase did not show this effect. Reconstitution of the solubilized membrane-bound cyclic AMP-dependent protein kinase, in the presence of a neuronal membrane substrate protein for the activated protein kinase, with a purified preparation of (Na+ + K+)-ATPase, resulted in a decrease in overall (Na+ + K+)-ATPase activity in the presence of cyclic AMP. Reconstitution of the protein kinase alone or the substrate protein alone, with the (Na+ + K+)-ATPase has no effect on (Na+ + K+)-ATPase activity in the absence or presence of cyclic AMP. Preliminary experiments indicate that, when the activated protein kinase and the substrate protein were reconstituted with the (Na+ + K+)-ATPase enzyme, there appeared to be a decrease in the Na+-dependent phosphorylation of the Na+-ATPase enzyme, while the K+-dependent dephosphorylation of the (Na+ + K+)-ATPase was unaffected.  相似文献   

17.
An enriched fraction of plasma membranes was prepared from canine ventricle by a process which involved thorough disruption of membranes by vigorous homogenization in dilute suspension, sedimentation of contractile proteins and mitochondria at 3000 × g followed by sedimentation of a microsomal fraction at 200 000 × g. The microsomal suspension was then fractionated on a discontinuous sucrose gradient. Particles migrating in the density range 1.0591–1.1083 were characterized by (Na+ + K+)-ATPase activity and [3H]ouabain binding as being enriched in sarcolemma and were comprised of nonaggregated vesicles of diameter approx. 0.1 μm. These fractions contained (Ca2+ + Mg2+)-ATPase which appeared endogenous to the sarcolemma. The enzyme was solubilized using Triton X-100 and 1 M KCl and partially purified. Optimal Ca2+ concentration for enzyme activity was 5–10 μM. Both Na+ and K+ stimulated enzyme activity. It is suggested that the enzyme may be involved in the outward pumping of Ca2+ from the cardiac cell.  相似文献   

18.
Ehrlich cells actively accumulate neutral amino acids even if both the Na+ and K+ gradients are inverted. The seeming contradiction of this observation to the gradient hypothesis is, however, explained by the presence of a powerful electrogenic Na+ pump, which stongly raises the electrochemical potential gradient of Na+ under these conditions. Since the evidence of this pump has so far been found only during abnormal concentrations of alkali ions (low K+, high Na+) in these cells, the question arises whether the pump is equally powerful with completely normal cells, when the pump is not ‘needed’ for amino acid transport. Using the initial rate of uptake of the test amino acid (2-aminoisobutyrate) as a sensitive monitor of the electrical potential at constant cation distribution between cell and medium, a procedure has been devised to split the overall electrical potential into the diffusional and the pump component. With this procedure it could be shown that the electrogenic pump per se is most powerful in K+-depleted and Na+-rich cells but declines to a lower ‘resting’ value according as the electrolyte content of the cell approaches normality. A strong positive correlation between cellular Na+ content and the electrogenic pumping activity suggests that the intracellular activity of this ion regulates the rate of the electrogenic pump. The low activity of the pump under normal conditions may explain why the existance of this pump has rarely come to attention previously.  相似文献   

19.
Quenching of the fluorescence of the (Ca2+ + Mg2+)-ATPase purified from muscle sarcoplasmic reticulum can be used to measure relative binding constants of hydrophobic compounds to the phospholipid-protein interface. We show that the binding constant for cholesterol is considerably less than that for phosphatidylcholine, so that cholesterol is effectively excluded from the phospholipid annulus around the ATPase. However, dibromocholestan-3β-ol causes quenching of the fluorescence of the ATPase, and so has access to other, non-annular sites. We suggest that these non-annular sites could be at protein/protein interfaces in ATPase oligomers. Oleic acid can bind at the phospholipid/protein interface, although its binding constant is less than that for a phosphatidylcholine, and it can also bind at the postulated non-annular sites. The effects of these compounds on the activity of the ATPase depend on the structure of the phospholipid present in the systems.  相似文献   

20.
The ATP/ADP exchange is shown to be a partial reaction of the (H+ + K+)-ATPase by the absence of measurable nucleoside diphosphokinase activity and the insensitivity of the reaction to P1, P5 -di(adenosine-5′) pentaphosphate, a myokinase inhibitor. The exchange demonstrates an absolute requirement for Mg2+ and is optimal at an ADP/ATP ratio of 2. The high ATP concentration (K0.5 = 116 μM) required for maximal exchange is interpreted as evidence for the involvement of a low affinity form of nucleotide site. The ATP/ADP exchange is regarded as evidence for an ADP-sensitive form of the phosphoenzyme. In native enzyme, pre-steady state kinetics show that the formation of the phosphoenzyme is partially sensitive to ADP while modification of the enzyme by pretreatment with 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) in the absence of Mg2+ results in a steady-state phosphoenzyme population, a component of which is ADP sensitive. The ATP/ADP exchange reaction can be either stimulated or inhibited by the presence of K+ as a function of pH and Mg2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号