首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Swedish sand lizard (Lacerta agilis) is a relict species from the period of warmth following the last glacial episode and has a fragmented distribution in central Sweden and a more continuous distribution in the southern part of the country. We used this model system of colonization–extinction for a study of genetic variability within and among Swedish populations from different parts of the distribution range using multilocus DNA fingerprinting. The results from the Swedish populations are then contrasted with those from a large Hungarian population in the centre of the species geographical distribution range, which is likely to closely resemble the ancestral founding population of Sweden. Swedish populations have a low level of genetic variability compared with the Hungarian reference population, which showed a genetic variability within the range described for outbred populations. Within the Swedish populations, the average bandsharing was 0.61, the mean heterozygosity 0.45 and the estimated number of alleles 2.7. The figures for the Hungarian population were a bandsharing of 0.19, a heterozygosity of 0.89 and an estimated number of alleles of 9.8. A population bottleneck, common to all Swedish sand lizards, is indicated by less than 20% of the alleles in the Hungarian population being retained in the Swedish populations, and higher bandsharing similarity between different Swedish populations (0.33) as opposed to the Hungarian population (0.19). The limited variability found in Swedish sand lizards is strongly subdivided between populations, with an average FST of 0.32, indicating a very limited gene flow between the isolated populations, as well as between populations in the region where the sand lizard has a more or less continuous distribution (FST = 0.41).  相似文献   

2.
Genetic diversity was studied at allozyme loci in two Palearctic and one Nearctic population of Aedimorphus (=Aedes) vexans, a species of public health and veterinary importance. The population from Serbia was the most polymorphic (P= 35%) with the highest observed heterozygosity (Ho= 0.027). The lowest observed heterozygosity (Ho= 0.010) was obtained for the Nearctic population. All analyses based on individual (STRUCTURE analysis) and population level (pairwise FST,Nm values, AMOVA, Nei's D value) revealed significant structuring between Nearctic and Palearctic populations, indicating a lack of gene flow and thus, the presence of independent gene pools. Taxon‐specific alleles at the diagnostic Ao, Hk‐2, Hk‐3, Hk‐4, Idh‐1, and Idh‐2 loci were used for identification and separation of Nearctic and Palearctic populations. Population genetics study provided valuable information on the correct distinction of Am. vexans populations and their adaptive potential that could find a future use in the studies of vector competence and development of vector‐control strategies.  相似文献   

3.
Although loss of genetic variation is frequently assumed to be associated with loss of adaptive potential, only few studies have examined adaptation in populations with little genetic variation. On the Swedish west coast, the northern fringe populations of the natterjack toad Bufo calamita inhabit an atypical habitat consisting of offshore rock islands. There are strong among‐population differences in the amount of neutral genetic variation, making this system suitable for studies on mechanisms of trait divergence along a gradient of within‐population genetic variation. In this study, we examined the mechanisms of population divergence using QST–FST comparisons and correlations between quantitative and neutral genetic variation. Our results suggest drift or weak stabilizing selection across the six populations included in this study, as indicated by low QSTFST values, lack of significant population × temperature interactions and lack of significant differences among the islands in breeding pond size. The six populations included in this study differed in both neutral and quantitative genetic variation. Also, the correlations between neutral and quantitative genetic variation tended to be positive, however, the relatively small number of populations prevents any strong conclusions based on these correlations. Contrary to the majority of QST–FST comparisons, our results suggest drift or weak stabilizing selection across the examined populations. Furthermore, the low heritability of fitness‐related traits may limit evolutionary responses in some of the populations.  相似文献   

4.
Random amplified polymorphic DNA (RAPD) marker variation was analyzed in female gametophytes in natural populations of Gelidium canariense (Grunow) Seoane‐Camba ex Haroun, Gil‐Rodríguez, Diaz de Castro et Prud'Homme van Reine from the Canary Islands to estimate the degree and distribution of genetic variability and differentiation. A total of 190 haploid individuals were analyzed with 60 polymorphic RAPDs bands which produced 190 distinct multilocus genotypes. A high level of polymorphism was detected in all populations analyzed. Within‐population gene diversity ranged from 0.156 to 0.264. The populations on the island of Gran Canaria showed higher genetic variation than the other populations analyzed. The partitioning of molecular variance by analysis of molecular variance showed that most genetic variation resides within populations (68.85%). These results suggest that sexual reproduction is the predominant mode of reproduction for G. canariense gametophytic populations, and the main determinant in reaching high levels of genetic diversity. The Neighbor‐Joining tree and FCA analysis displayed two subclusters that correspond to the populations from the western islands (Tenerife, La Palma, Gomera) and the eastern island (Gran Canaria). In addition, we have detected a significant relationship between FST/(1?FST) and geographical distance consistent with data on water circulation and age of islands. The results obtained agree with an isolation by distance model, with gene flow from eastern to the western islands, and a high level of genetic differentiation between populations (FST=0.311, P<0.001).  相似文献   

5.
The oriental fruit fly, Bactrocera dorsalis, is a serious pest of fruits and vegetables in South‐east Asia, and, because of quarantine restrictions, impedes international trade and economic development in the region. Revealing genetic variation in oriental fruit fly populations will provide a better understanding of the colonization process and facilitate the quarantine and management of this species. The genetic structure in 15 populations of oriental fruit fly from southern China, Laos and Myanmar in South‐east Asia was examined with a 640‐bp sequence of the mitochondrial cytochrome oxidase subunit I (COI) gene. The highest levels of genetic diversity were found in Laos and Myanmar. Low to medium levels of genetic differentiation (FST ≤ 0.134) were observed among populations. Pooled populations from mainland China differed from those in Laos and Myanmar (FST = 0.024). Genetic structure across the region did not follow the isolation‐by‐distance model. The high genetic diversity observed in Laos and Myanmar supports the South‐east Asian origin of B. dorsalis. High genetic diversity and significant differentiation between some populations within mainland China indicate B. dorsalis populations have been established in the region for an extended period of time. High levels of genetic diversity observed among the five populations from Hainan Island and similarity between the Island and Chinese mainland populations indicate that B. dorsalis was introduced to Hainan from the mainland and has been on the island for many years. High genetic diversity in the recently established population in Shanghai (Pudong) suggests multiple introductions or a larger number of founders.  相似文献   

6.
Identification of genes involved in local adaptation is particularly challenging for species functioning as a network of interconnected populations undergoing frequent extinctions–recolonizations, because populations are submitted to contrasted evolutionary pressures. Using amplified fragment length polymorphism markers, population genetic structure of the mosquito Aedes rusticus was analysed in five geographical areas of the French Rhône‐Alpes region. We included a number of sites that were treated with the bio‐insecticide Bacillus thuringiensis israelensis (Bti) for more than 15 years. Analysis of molecular variance revealed that most of the genetic variability was found within populations (96%), with no significant variation among geographical areas, although variation among populations within areas (4%) was significant. The global genetic differentiation index FST was low (0.0366 ± 0.167). However, pairwise FST values were significant and no isolation‐by‐distance at the regional level was observed, suggesting a metapopulation structure in this species. Bti‐treatment had no effect on genetic structure and on within‐population genetic diversity. Potential signatures of positive selection associated with Bti‐treatment were detected for five loci, even though toxicological bioassays performed on field‐collected larvae showed no significant difference in mortality between Bti‐treated and nontreated sites. The difficulty of detecting moderate resistance in field‐collected larvae together with possible differential persistence of toxins in the environment may explain our inability to detect a toxicological response to Bti in treated sites. The evidence for positive selection occurring at several genomic regions suggests a first step towards Bti resistance in natural mosquito populations treated with this bio‐insecticide. Furthermore, this signal was detectable using genomic tools before any toxicological evidence for resistance could be identified.  相似文献   

7.
We have estimated levels of genetic diversity and partitioning in the Mexican endemic cycad species Dioon sonorense, Dioon tomasellii, and Dioon holmgrenii, whose populations are exclusively distributed along the Pacific seaboard. For the three species, the patterns of variation at 19 allozyme loci in a total of 11 populations were evaluated. The average number of alleles per locus was in the range 2.05–1.68, corresponding to the northernmost population of D. sonorense (Mazatán), and the southernmost population of Dioon holmgrenii (Loxicha), respectively. In turn, the percentage of polymorphic loci peaked (94.73) in the El Higueral and Altamirano populations of Dioon tomasellii, and was estimated to be lowest (57.89) in the Loxicha population of D. holmgrenii. The mean expected heterozygosis varied markedly between taxa, with relatively high indices for D. sonorense and D. tomasellii (HE = 0.314 and 0.295, respectively) and substantially lower values for D. holmgrenii (HE = 0.170). Comparison of the inferred genetic structure based on F‐statistics for the three species also indicated differences along the north‐south Pacific seaboard axis. For D. sonorense and D. tomasellii, local inbreeding (FIS) was zero but global inbreeding (FIT) values were positive and significantly different from zero (0.130 and 0.116, respectively). By contrast, values of both FIT and FIS were negative and significantly different from zero (?0.116 and ?0.201, respectively) for D. holmgrenii. The genetic differentiation between populations (FST) had positive values in all taxa and corresponded with their geographic location along the north‐south axis: according to this statistic, D. sonorense was the most differentiated species (FST = 0.151), D. tomasellii had intermediate values (FST = 0.145), and D. holmgrenii was the less differentiated taxon (FST = 0.069). Finally, a phenogram representing Nei's genetic distances among populations displayed three major groups, each one corresponding to each of the studied species. Within D. tomasellii (of intermediate geographic distribution), a further division into two clusters corresponded precisely to the pair of populations that are geographically divided by the Trans Mexican Neovolcanic Mountains. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 94 , 765–776.  相似文献   

8.
Spinner dolphins (Stenella longirostris) exhibit different social behaviours at two regions in the Hawaiian Archipelago: off the high volcanic islands in the SE archipelago they form dynamic groups with ever‐changing membership, but in the low carbonate atolls in the NW archipelago they form long‐term stable groups. To determine whether these environmental and social differences influence population genetic structure, we surveyed spinner dolphins throughout the Hawaiian Archipelago with mtDNA control region sequences and 10 microsatellite loci (n = 505). F‐statistics, Bayesian cluster analyses, and assignment tests revealed population genetic separations between most islands, with less genetic structuring among the NW atolls than among the SE high islands. The populations with the most stable social structure (Midway and Kure Atolls) have the highest gene flow between populations (mtDNA ΦST < 0.001, P = 0.357; microsatellite FST = ?0.001; P = 0.597), and a population with dynamic groups and fluid social structure (the Kona Coast of the island of Hawai’i) has the lowest gene flow (mtDNA 0.042 < ΦST < 0.236, P < 0.05; microsatellite 0.016 < FST < 0.040, P < 0.001). We suggest that gene flow, dispersal, and social structure are influenced by the availability of habitat and resources at each island. Genetic comparisons to a South Pacific location (n = 16) indicate that Hawaiian populations are genetically depauperate and isolated from other Pacific locations (mtDNA 0.216 < FST < 0.643, P < 0.001; microsatellite 0.058 < FST < 0.090, P < 0.001); this isolation may also influence social and genetic structure within Hawai’i. Our results illustrate that genetic and social structure are flexible traits that can vary between even closely‐related populations.  相似文献   

9.
Bergmann's rule predicts that individuals are larger in more poleward populations and that this size gradient has an adaptive basis. Hence, phenotypic divergence in size traits between populations (PST) is expected to exceed the level of divergence by drift alone (FST). We measured 16 skeletal traits, body mass and wing length in 409 male and 296 female house sparrows Passer domesticus sampled in 12 populations throughout Finland, where the species has its northernmost European distributional margin. Morphometric differentiation across populations (PST) was compared with differentiation in 13 microsatellites (FST). We find that twelve traits phenotypically diverged more than FST in both sexes, and an additional two traits diverged in males. The phenotypic divergence exceeded FST in several traits to such a degree that findings were robust also to strong between‐population environmental effects. Divergence was particularly strong in dimensions of the bill, making it a strong candidate for the study of adaptive molecular genetic divergence. Divergent traits increased in size in more northern populations. We conclude that house sparrows show evidence of an adaptive latitudinal size gradient consistent with Bergmann's rule on the modest spatial scale of ca. 600 km.  相似文献   

10.
Aedes aegypti (L.) (Diptera: Culicidae), the main vector of yellow fever and dengue viruses, was eradicated from Argentina between 1955 and 1963, but reinvaded the country in 1986. In Uruguay, the species was reintroduced in 1997. In this study we used highly polymorphic inter‐simple sequence repeats (ISSR) markers to analyse the genetic structure of Ae. aegypti populations from Uruguay and northeastern Argentina to identify possible colonization patterns of the vector. Overall genetic differentiation among populations was high (FST = 0.106) and showed no correlation with geographic distance, which is consistent with the short time since the reintroduction of the species in the area. Differentiation between pairs of Argentine populations (FST 0.072 to 0.221) was on average higher than between Uruguayan populations (FST?0.044 to 0.116). Bayesian estimation of population structure defined four genetic clusters and most populations were admixtures of two of them: Mercedes and Treinta y Tres (Uruguay) were mixtures of clusters 1 and 3; Salto (Uruguay) and Paraná (Argentina) of clusters 1 and 4; Fray Bentos (Uruguay) of clusters 2 and 3, and Gualeguaychú (Argentina) of clusters 2 and 3. Posadas and Buenos Aires in Argentina were fairly genetically homogeneous. Our results suggest that Ae. aegypti recolonized Uruguay from bordering cities in Argentina via bridges over the Uruguay River and also from Brazil.  相似文献   

11.
The floodwater mosquito Aedes (Aedimorphus) vexans (Meigen, 1830) (Diptera: Culicidae) is common in several areas of Sweden and is predicted to become more abundant in the wake of expected changes in precipitation and temperature caused by climate change. As well as being a nuisance, Ae. vexans can act as a vector of over 30 viruses. In the event of an outbreak of disease caused by a vector‐borne virus, knowledge of the distribution, population structure and intermixing of populations from different locations will help direct resources to target locations to prevent spread of the pathogen. The present study analysed individual Ae. vexans from eight locations throughout Sweden. Based on the mitochondrial cytochrome oxidase I (COI) marker, a subset of the analysed mosquitoes cluster apart from the other samples. Similarly, two nuclear loci were sequenced and the same phylogenetic structure observed. These results indicate that this group represents a reproductively isolated population among Ae. vexans. Comparisons with COI sequences held in the Barcode of Life Database (BoLD) for Ae. vexans from around the world show that specimens collected in Belgium and Estonia group together with the Swedish group, suggesting that this genotype is present throughout northern Europe. These results suggest there is a cryptic taxonomic unit related to Ae. vexans in northern Europe.  相似文献   

12.
G ST‐values and its relatives (FST) belong to the most used parameters to define genetic differences between populations. Originally, they were developed for allozymes with very low number of alleles. Using highly polymorphic microsatellite markers it was often puzzling that GST‐values were very low but statistically significant. In their papers, Jost (2008) and Hedrick (2005) explained that GST‐values do not show genetic differentiation, and Jost suggested calculating D‐values instead. Theoretical mathematical considerations are often difficult to follow; therefore, we chose an applied approach comparing two artificial populations with different number of alleles at equal frequencies and known genetic divergence. Our results show that even for more than one allele per population GST‐values do not calculate population differentiation correctly; in contrast, D‐values do reflect the genetic differentiation indicating that data based on GST‐values need to be re‐evaluated. In our approach, statistical evaluations remained similar. We provide information about the impact of different sample sizes on D‐values in relation to number of alleles and genetic divergence.  相似文献   

13.
Understanding how environmental variation influences population genetic structure is important for conservation management because it can reveal how human stressors influence population connectivity, genetic diversity and persistence. We used riverscape genetics modelling to assess whether climatic and habitat variables were related to neutral and adaptive patterns of genetic differentiation (population‐specific and pairwise FST) within five metapopulations (79 populations, 4583 individuals) of steelhead trout (Oncorhynchus mykiss) in the Columbia River Basin, USA. Using 151 putatively neutral and 29 candidate adaptive SNP loci, we found that climate‐related variables (winter precipitation, summer maximum temperature, winter highest 5% flow events and summer mean flow) best explained neutral and adaptive patterns of genetic differentiation within metapopulations, suggesting that climatic variation likely influences both demography (neutral variation) and local adaptation (adaptive variation). However, we did not observe consistent relationships between climate variables and FST across all metapopulations, underscoring the need for replication when extrapolating results from one scale to another (e.g. basin‐wide to the metapopulation scale). Sensitivity analysis (leave‐one‐population‐out) revealed consistent relationships between climate variables and FST within three metapopulations; however, these patterns were not consistent in two metapopulations likely due to small sample sizes (= 10). These results provide correlative evidence that climatic variation has shaped the genetic structure of steelhead populations and highlight the need for replication and sensitivity analyses in land and riverscape genetics.  相似文献   

14.
Conservation genetics is important in the management of endangered species, helping to understand their connectivity and long‐term viability, thus identifying populations of importance for conservation. The pond bat (Myotis dasycneme) is a rare species classified as “Near Threatened” with a wide but patchy Palearctic distribution. A total of 277 samples representing populations in Denmark, Germany, Latvia, Hungary, and Russia were used in the genetic analyses; 224 samples representing Denmark, Germany, and Russia were analyzed at 10 microsatellite loci; 241 samples representing all areas were analyzed using mitochondrial D‐loop and cytochrome B sequences. A Bayesian clustering approach revealed two poorly resolved clusters, one representing the Danish and German groups and the other the Russian group. However, significantly different pairwise FST and DEST estimates were observed between the Danish and German groups and between the Danish and Russian groups suggesting a recent population structure. These conflicting results might be attributed to the effect of migration or low resolution due to the number of microsatellite markers used. After concatenating the two mitochondrial sequences, analysis detected significant genetic differentiation between all populations, probably due to genetic drift combined with a founder event. The phylogenetic tree suggested a closer relationship between the Russian and Northern European populations compared to the Hungarian population, implying that the latter belongs to an older ancestral population. This was supported by the observed haplotype network and higher nucleotide diversity in this population. The genetic structuring observed in the Danish/German pond bat stresses the need for a cross‐border management between the two countries. Further, the pronounced mtDNA structuring, together with the indicated migration between nearby populations suggest philopatric female behavior but male migration, emphasizes the importance of protecting suitable habitat mosaics to maintain a continuum of patches with dense pond bat populations across the species' distribution range.  相似文献   

15.
To investigate the potential of association genetics for willow breeding, Salix viminalis germplasm was assembled from UK and Swedish collections (comprising accessions from several European countries) and new samples collected from nature. A subset of the germplasm was planted at two sites (UK and Sweden), genotyped using 38 SSR markers and assessed for phenological and biomass traits. Population structure, genetic differentiation (F ST ) and quantitative trait differentiation (Q ST ) were investigated. The extent and patterns of trait adaptation were assessed by comparing F ST ?and Q ST parameters. Of the 505 genotyped diploid accessions, 27 % were not unique. Genetic diversity was high: 471 alleles was amplified; the mean number of alleles per locus was 13.46, mean observed heterozygosity was 0.55 and mean expected heterozygosity was 0.62. Bayesian clustering identified four subpopulations which generally corresponded to Western Russia, Western Europe, Eastern Europe and Sweden. All pairwise F ST values were highly significant (p?F ST ???=???0.12), and the smallest between the Swedish and Eastern European populations (F ST ??=??0.04). The Swedish population also had the highest number of identical accessions, supporting the view that S. viminalis was introduced into this country and has been heavily influenced by humans. Q ST values were high for growth cessation and leaf senescence, and to some extent stem diameter, but low for bud burst time and shoot number. Overall negative clines between longitudinal coordinates and leaf senescence, bud burst and stem diameter were also found.  相似文献   

16.
The present study examined the contemporary genetic composition of the Eurasian badger, Meles meles, in Ireland, Britain and Western Europe, using six nuclear microsatellite loci and a 215‐bp fragment of the mitochondrial DNA control region. Significant population structure was evident within Europe (global multilocus microsatellite FST = 0.205, P < 0.001; global mitochondrial control region ΦST = 0.399, P < 0.001). Microsatellite‐based cluster analyses detected one population in Ireland, whereas badgers from Britain could be subdivided into several populations. Excluding the island populations of Ireland and Britain, badgers from Western Europe showed further structuring, with evidence of discrete Scandinavian, Central European, and Spanish populations. Mitochondrial DNA cluster analysis grouped the Irish population with Scandinavia and Spain, whereas the majority of British haplotypes grouped with those from Central Europe. The findings of the present study suggest that British and Irish badger populations colonized from different refugial areas, or that there were different waves of colonization from the source population. There are indications for the presence of an Atlantic fringe element, which has been seen in other Irish species. We discuss the results in light of the controversy about natural versus human‐mediated introductions. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

17.
Aim To elucidate the historical phylogeography of the dusky pipefish (Syngnathus floridae) in the North American Atlantic and Gulf of Mexico ocean basins. Location Southern Atlantic Ocean and northern Gulf of Mexico within the continental United States. Methods A 394‐bp fragment of the mitochondrial cytochrome b gene and a 235‐bp fragment of the mitochondrial control region were analysed from individuals from 10 locations. Phylogenetic reconstruction, haplotype network, mismatch distributions and analysis of molecular variance were used to infer population structure between ocean basins and time from population expansion within ocean basins. Six microsatellite loci were also analysed to estimate population structure and gene flow among five populations using genetic distance methods (FST, Nei’s genetic distance), isolation by distance (Mantel’s test), coalescent‐based estimates of genetic diversity and migration patterns, Bayesian cluster analysis and bottleneck simulations. Results Mitochondrial analyses revealed significant structuring between ocean basins in both cytochrome b (ΦST = 0.361, P < 0.0001; ΦCT = 0.312, P < 0.02) and control region (ΦST = 0.166, P < 0.0001; ΦCT = 0.128, P < 0.03) sequences. However, phylogenetic reconstructions failed to show reciprocal monophyly in populations between ocean basins. Microsatellite analyses revealed significant population substructuring between all locations sampled except for the two locations that were in closest proximity to each other (global FST value = 0.026). Bayesian analysis of microsatellite data also revealed significant population structuring between ocean basins. Coalescent‐based analyses of microsatellite data revealed low migration rates among all sites. Mismatch distribution analysis of mitochondrial loci supports a sudden population expansion in both ocean basins in the late Pleistocene, with the expansion of Atlantic populations occurring more recently. Main conclusions Present‐day populations of S. floridae do not bear the mitochondrial DNA signature of the strong phylogenetic discontinuity between the Atlantic and Gulf coasts of North America commonly observed in other species. Rather, our results suggest that Atlantic and Gulf of Mexico populations of S. floridae are closely related but nevertheless exhibit local and regional population structure. We conclude that the present‐day phylogeographic pattern is the result of a recent population expansion into the Atlantic in the late Pleistocene, and that life‐history traits and ecology may play a pivotal role in shaping the realized geographical distribution pattern of this species.  相似文献   

18.
The newly introduced mosquito Aedes japonicus has expanded from its original range in Northeastern Asia to 29 US states (including Hawaii) plus Canada and northern Europe. Our objectives were to test an earlier hypothesis of multiple introductions of this species to the Northeastern US and evaluate putative temporal changes in genetic makeup. Using a panel of seven microsatellite loci, we confirmed the existence of two abundant genetic forms in specimens originally collected in 1999–2000 (FST value based on microsatellite data = 0.26) that matches the disjunctive distribution of mitochondrial haplotypes. To examine the distribution of the two genetic ‘types’ across Pennsylvania we created a fine‐scale genetic map of Ae. japonicus using 439 specimens collected from 54 Pennsylvania counties in 2002–2003. We also made direct comparisons between collections in 1999–2000 and new collections made in 2004–2005 obtained from the same areas in the northeastern US. We observed that the strong association between mtDNA haplotype and microsatellite signature seen in 1999–2000 had weakened significantly by 2002 across Pennsylvania, a trend continued to some extent in 2004–2005 in PA, NJ, and NY, indicating that once easily distinguishable separate introductions are merging. The two expanding genetic forms create a complex correlation between spatial and genetic distances. The existence of multiple introductions would be obscured without sampling early and across time with highly polymorphic molecular markers. Our results provide a high‐resolution analysis of the spatial and temporal dynamics of a newly introduced disease vector and argue that successive introductions may be a common pattern for invasive mosquitoes.  相似文献   

19.
We isolated five microsatellite sequences from an enriched‐(CAA)n library of 5000 recombinant clones in Aedes aegypti. Two polymorphic microsatellites from our library and four from other sequence databases were tested: we investigated their polymorphism and Mendelian inheritance in mosquito populations. Our results indicate that trinucleotide repeat markers could be used to differentiate Ae. aegypti populations, making them valuable tools for the study of population genetic structure.  相似文献   

20.
Understanding the factors that influence larval dispersal and connectivity among marine populations is critical to the conservation and sustainable management of marine resources. We assessed genetic subdivision among ten populations of copper rockfish (Sebastes caurinus) representing paired samples of outer coast and the heads of inlets in five replicate sounds on the west coast of Vancouver Island, British Columbia, using 17 microsatellite DNA loci. Overall, subdivision (FST) was low (FST = 0.031, < 0.001), but consistently higher between paired coast and head of inlet sites (mean FST = 0.047, < 0.001) compared to among the five coast sites (mean FST = ?0.001, > 0.5) or among the five head of inlet sites (mean FST = 0.026, < 0.001). Heterozygosity, allelic richness and estimates of effective population size were also lower in head of inlet sites than in coast sites. Bayesian analysis identified two genetic groups across all samples, a single genetic group among only coast samples, two genetic groups among head of inlet samples and two genetic groups within each sound analysed separately. Head of inlet copper rockfish tended to be shorter with lower condition factors and grew more slowly than coast sites fish. Reduced physical connectivity and selection against immigrants in contrasting outer coast–head of inlet environments likely contribute to the evolution of population structure of copper rockfish. Based on genetic connectivity, coast sites appear to be better served by existing marine protected areas than are head of inlet sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号