首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 737 毫秒
1.
Analgesic activities of morphiceptin, β-casomorphins, [D-Ala2, D-Leu5] enkephalin and Sandoz peptide, FK 33–824, were examined by intracerebroventricular administration in rats. Their relative potencies in vivo were compared with their receptor binding activities. The receptor binding affinities were determined from the competition curves against [3H]naloxone binding in the absence and presence of sodium ions for morphine (μ) receptors and against 125I-[D-Ala2, D-Leu5] enkephalin binding for enkephalin (δ) receptors. A good correlation between analgesic activity and morphine (μ) receptor but not enkephin (δ) receptor binding affinity was obtained. These data extend the hypothesis that morphine (δ) receptors mediate the major portion of the analgesic activity of opioids.  相似文献   

2.
The site at which opiate agonists and antagonists act to alter secretion of prolactin, growth hormone and luteinizing hormone as well as the pharmacological specificity of the opiate receptors mediating these effects were examined in rats. Injection of β-endorphin but not a 10 fold higher dose of the non opiate peptide β-endorphin, increased release of prolactin and growth hormone in male rats while inhibiting luteinizing hormone release in ovariectomized, estrogen primed female rats. Prior treatment with naltrexone i.p. blocked these responses. Injection of naltrexone into the hypothalamus lowered prolactin release. In rats with a surgically formed hypothalamic island systemic administration of morphine or naltrexone altered prolactin release in the same manner as was observed in intact animals. In contrast no effects of β-endorphin or naltrexone were observed on the spontaneous secretion of prolactin invitro. In addition β-endorphin did not alter the inhibition of prolactin release produced by apomorphine invitro. The ED50 for stimulation of prolactin release following intraventricular administration of β-endorphin or the synthetic enkephalin analog FK 33-824 was the same, approximately 0.1 ng/rat. However FK 33-824 at 0.2 ng/rat was able to produce much greater analgesia and catatonia than β-endorphin. The metabolism and distribution of β-endorphin was examined but did not account for these differential effects. These results indicate that opiate agonists and antagonists can act at the hypothalamic but not the anterior pituitary level to alter release of prolactin, growth hormone and luteinizing hormone. In addition the data suggest that the opiate receptors mediating release of prolactin may have a different pharmacological specificity from those involved with analgesia and catatonia.  相似文献   

3.
Active in both binding and biological assays, morphiceptin (NH2 Tyr-Pro-Phe-Pro-CONH2), a potent opioid peptide derivative of β-casamorphine, binds specifically and selectively to mu or morphine-type receptors with little affinity for delta sites. Displacement studies of a variety of 3H-labeled opiates and enkephalins show biphasic curves. Naloxazone, which blocks irreversibly and selectively high affinity opiate and enkephalin binding, abolishes morphiceptin's inhibition of binding at low concentrations, suggesting that the high affinity binding of enkephalins and opiates represents a mu or morphine-type receptor. Unlike the reversible antagonist naloxone, naloxazone treatment invivo inhibits for over 24 hours the analgesic activity of morphiceptin like it inhibits morphine, β-endorphin and enkephalin analgesia. Together, these studies imply that opiates and enkephalins bind with highest affinity to a mu receptor which mediates their analgesic activity. The 3H-D-ala2-D-leu5-enkephalin binding remaining after naloxazone treatment, representing a lower affinity site (KD 4 nM), is quite insensitive to morphiceptin inhibition and has the characteristics of a delta receptor. However, the 3H-dihydromorphine binding present after naloxazone treatment, which also represents a lower affinity site (KD 6 nM), is far more sensitive to both morphine and morphiceptin and may represent a second morphine-like, or mu, receptor.  相似文献   

4.
Systematic administration of the enkephalin analog FK 33-824 was previously shown to stimulate PRL secretion and to inhibit ACTH secretion in man. Naloxone prevented the effect on PRL release, but not on ACTH release. In this study, the direct action of this analog on hormone release by rat anterior pituitary lobes invitro were investigated. 1 uM FK 33-824 inhibited basal ACTH secretion by anterior pituitary glands in vitro, while 0.1 uM and 1 uM attenuated the lysine vasopressin stimulated ACTH release. Naloxone did not reverse the inhibitory action of the analog on ACTH release. β-Endorphin (0.01 - 1 uM) did not directly affect ACTH release. Basal and dopamine-induced inhibition of PRL release by anterior pituitary glands was neither influenced by FK 33-824 (0.1 and 1 uM), nor by β-endorphin (0.1 and 1 uM) with or without bacitracin. This study shows that the long-acting met-enkephalin analog FK 33-824 differentially affects PRL and ACTH secretion by the pituitary gland. It seems to stimulate PRL release at a suprapituitary site and this action probably involves u opiate receptors, because naloxone prevents these stimulatory effects. The inhibitory effect of FK 33-824 on ACTH release, however, is mediated via a direct effect at the pituitary level, which does not involve u receptors, as naloxone did not prevent this effect. In this respect, its action differs from that of β-endorphin, which does not directly affect ACTH release by the anterior pituitary gland.  相似文献   

5.
The selectivity of the Met-enkephalin analog FK 33-824 (FK) for mu opioid receptors has been, over the years, a matter of controversy. We report here pharmacological and radioautographic data demonstrating that at nanomolar concentrations. 125I-FK interacts exclusively with mu sites. (1) Specific binding of 125I-FK to rat striatal membranes is totally inhibited by mu- and/or delta-preferring ligands according to monovalent, Michaelian kinetics, with a potency proportional to the affinity of competing drugs for mu receptors. (2) Unlabeled FK competes only at high concentration with the delta-selective ligand 3H-DPLPE and according to the same kinetics as the mu-selective agonist DAGO. (3) 125I-FK generates the same regional radioautographic labeling pattern as 3H-DAGO. We conclude that when used at nanomolar concentrations 125I-FK constitutes a selective probe for the radioautographic detection of mu opioid receptors at both light and electron microscopic levels.  相似文献   

6.
The effects of prolyl-leucyl-glycinamide and cyclo (leucyl-glycine) on morphine-induced antinociception in mice and on in vitro binding of 3H-ligands for opiate receptor subtypes (μ, δ and κ) the mouse brain homogenate were determined. Subcutaneous administration of either of the above peptides (1, 2, and 4 mg/kg) 10 min prior to the injection of morphine did not affect morphine-induced antinociception as evidenced by the identical ED50 values of morphine in vehicle and peptide treated groups. The binding of 3H-dihydromorphine and 3H-naloxone ( μ receptors), 3HDAla2DLeu5-enkephalin (δ receptors), and 3H-ethylketocyclazocine (κ receptors) to opiate receptors in the mouse brain homogenate was also unaffected by both the peptides over a large concentration range. It is concluded that these peptides do not interact with brain opiate receptors.  相似文献   

7.
The interaction of beta-endorphin with opiate receptors was studied by using the radioiodinated, metabolically stable D-Ala2 derivative of human beta-endorphin. This analog binds specifically to rat brain membrane preparations with an apparent Kd of about 2.5 x 10-9 M. The ability of various enkephalin analogs, as well as opiate agonists and antagonists, to inhibit the binding of beta-endorphin clearly demonstrates that this peptide can bind to opiate receptors. However, the effects of various cations on the binding of 125I-[D-Ala2]beta-endorphin are markedly different from those found for enkephalin binding. Sodium ion at physiological concentrations decreases substantially the binding of enkephalins but only slightly decreases endorphin binding, whereas manganese enhances enkephalin binding but has no effect on endorphin binding. Moreover, potassium (100 mM) decreases the binding of beta-endorphin but does not affect enkephalin binding. These results suggest that beta-endorphin and enkephalin bind differently to the same receptor or bind to different receptors with overlapping specificity.  相似文献   

8.
We have studied the receptor binding activities of C-terminal free and amidated enkephalins with and without the dehydrophenylalanine4 residue. For the selective labeling of so-called δ and μ opiate receptors, specific tracers were used at low concentrations in rat brain membranes and neuroblastoma cells containing pure δ receptors. C-Terminal free enkephalins are five to eight times more potent in the assay for δ receptors than in μ assay, while the amides are almost equipotent in both assays. The presence of a C-terminal carboxyl group is a determining factor for selective activity. [D-Ala2, ΔPhe4, Met5]-enkephalin amide is very potent in all of the binding assays examined, and, in particular, twice as active as the saturated amide and the C-terminal free enkephalin in the δ assay. We suggest that the steric arrangement of the dehydrophenylalanine residue in position 4 is very important to the enhanced interaction with the δ receptors.  相似文献   

9.
FK-33-824 (Try-D-Ala-Gly-MePhe-Met(O)ol) is a potent enkephalin analog which has been tritium labelled with a high specific radioactivity (41 Ci/mmole). The labelled drug exhibits specific and saturable binding to rat brain crude mitochondrial fraction. Specific binding is inhibited by low concentrations of morphine, levallorphan and beta-endorphin, suggesting that FK 33-824 [3H] binds preferentially to mu opiate sites. Binding studies at equilibrium and kinetics of formation and dissociation of the labelled ligand-receptor complex indicate that FK 33-824 [3H] binds to two classes of specific sites. Their affinities are distinguishable at 0 degree (KD = 1.3 and 5.8 nM) and very close to each other at 37 degree (KD = 1.9 nM).  相似文献   

10.
Some opiates with morphinan- and benzomorphan-structures possess affinities for neuroleptic receptors as revealed by their abilities to compete with 3H-spiroperidol for common binding sites in rat striatum in vitro (IC50 in the range between 10?6 and 10?5M). The binding of these opiates to neuroleptic receptors appears to be of pharmacological significance, since in vivo studies in mice revealed a small but significant displacement of spiroperidol by high doses of the opiate antagonist levallorphan from specific binding sites in the striatum. In addition, there exists some correlation between the ability of opiates to bind to neuroleptic receptor sites in vitro and their potency to evoke “bizarre behavior” in rats in vivo. In contrast, a wide variety of other opiates having morphine-, morphinone- or oripavine-structure showed no affinity for neuroleptic binding sites in vitro (IC50 greater than 10?4 M). Of the opioid peptides (methionine-enkephalin, leucine-enkephalin and β-endorphin) none has an affinity for neuroleptic binding sites. A variety of other peptides were also investigated but did not interfere with spiroperidol binding. Only ACTH showed a moderate affinity for neuroleptic binding sites.  相似文献   

11.
3H-Labelled opiate and enkephalin ligands appear to bind with highest affinity to a single site responsible for their analgesic properties. Administered in vivo, naloxazone, an irreversible opiate, selectively inhibits for over 24 hours the high affinity binding of 3H-labelled mu, and kappa opiates and enkephalins. This inhibition of binding gradually resolves over 3 days, perhaps correlating with receptor turnover. Naloxazone treatment also abolishes morphine, D-ala2-met5-enkephalinamide and betah-endorphin analgesia. Although morphine and D-ala2-met5-enkephalinamide bind with similar potencies to the high affinity site, morphine's potency for the low affinity D-ala2-met5-enkephalinamide site is far less than the enkephalin analog. These results imply that all 3H-ligands examined bind with highest affinity to a mu-like receptor while low affinity D-ala2-met5-enkephalinamide binding, with a KD of 6 nM, represents a delta-like receptor.  相似文献   

12.
The pentapeptide leucine enkephalin induced down-regulation of enkephalin receptors in neuroblastoma-glioma NG108-15 hybrid cells in a reversible fashion, whereas the stable enkephalin analogue, d-Ala2-Met-enkephalinamide (AMEA), and the potent opiate alkaloid, etorphine, had a prolonged effect. The opiate alkaloid, morphine, which has low affinity to δ-type enkephalin receptors of these cells did not induce down-regulation, whereas AMEA decreased the binding of both opiate agonists and antagonists but had no effect on the binding of the α2-adrenergic ligand, [3H]yohimbine. From several experiments that were designed to remove the tightly bound AMEA, and from experiments with solubilized receptor we ruled out the possibility that the decreased binding capacity of enkephalin-treated cells reflects only receptor masking. The study suggests that down-regulation of enkephalin receptors that may also occur in vivo can account for some of the abnormal physiological responses of subjects treated chromically with opiates. However, since opiates from the morphine type can induce opiate tolerance in vivo, but not down-regulation of enkephalin receptors in the cultured cells, we suggest that down-regulation of δ-type opiate receptors may not be prerequisite for the development of the physiological tolerance/dependence on these alkaloids.  相似文献   

13.
We have used [125I] angiotensin II to investigate the presence of specific angiotensin II receptors in beef heart sarcolemmal membranes. The observed binding is saturable, reversible and specific. The apparent equilibrium dissociation constant is 2.23 ± 0.15 (x ± SEM) and the maximal number of binding sites per mg membrane protein is 32.8 ± 5.4 fmol (x ± SEM). The specific binding is 80–100% of the total [125I] angiotensin II bound and is directly proportional to membrane protein concentration over the range of 33–173 μg protein per ml. Angiotensin II and its antagonists competed for binding in a potency order of (agent, Ki): angiotensin II, 0.9nM > Sar1 Ala3, 7 nM > Sar1-Ile3, 51 nM > Sar1-Leu3, 427nM > angiotensin I, 1709 nM. The ability to characterize and quantify these receptors should now provide a method for investigating the mechanisms underlying the effects of angiotensin II on myocardial tissues.  相似文献   

14.
The protein neurotoxin II from the venom of the scorpion Androctonusaustralis Hector was labeled with 125I by the lactoperoxidase method to a specific radioactivity of about 100 μCi/μg without loss of biological activity. The labeled neurotoxin binds specifically to a single class of non intereacting binding sites of high affinity (KD = 0.3 – 0.6 nM) and low capacity (4000 – 8000 sites/cell) to electrically excitable neuroblastoma cells. Relation of these sites to the action potential Na+ channel is derived from identical concentration dependence of scorpion toxin binding and increase in duration and amplitude of action potential. The protein neurotoxin II from the sea anemone Anemona sulcata also affects the closing of the action potential Na+ ionophore in nerve axons. The unlabelled sea anemone toxin modifies 125I-labeled scorpion toxin II binding to neuroblastoma cells by increasing the apparent KD for labeled scorpion toxin without modification of the number of binding sites. It is concluded that both Androctonus scorpion toxin II and Anemona sea anemone toxin II interact competitively with a regulatory component of the action potential Na+ channel.  相似文献   

15.
D T Wong  J S Horng 《Life sciences》1973,13(11):1543-1556
Membranes from homogenates of corpus striatum bound 3H-dihydromorphine in a saturable fashion with a Km value of 1 × 10?9M. The binding of 3H-dihydromorphine to the membranes was reduced to about 10% by 10?7M levorphanol but not by 10?7M dextrorphan. The binding of 3H-dihydromorphine became less sensitive to 10?7M levorphanol when the concentration of 3H-dihydromorphine was greater than 2 × 10?9M. Other opiate narcotics, e.g. morphine and l-methadone, were as effective as levorphanol in competition for the binding 3H-dihydromorphine with ED50 values of 2–4 × 10?9M. d-Methadone and dextrorphan were about 1/50 and 1/2000 as effective as their respective levo-isomers. The opiate antagonist, naloxone, also competed effectively for the binding sites with an ED50 value of 3.3 × 10?9M. Substances like acetylcholine, choline, serotonin, norepinephrine and dopamine were ineffective. Only ionophores specific for divalent cations stimulated the binding of 3H-dihydromorphine suggesting that some endogenous divalent cations may be inhibitory to the binding of the opiate narcotic. The receptors of 3H-dihydromorphine probably exist in the membranes of nerve endings and have a density of 6 × 1012 sites per g in corpus striatum. We conclude that the described technique can successfully detect the opiate narcotic receptors in the central nervous system without the usual method of displacement.  相似文献   

16.
V R Spiehler  L Paalzow 《Life sciences》1979,24(23):2125-2132
Phenoxybenzamine was antinociceptive in the mouse tail electrical stimulation assay (ED50, 36.8 mg/kg) with a peak effect at 2 12 hours after subcutaneous injection. Naloxone antagonized this antinociception action of phenoxybenzamine in a dose-related manner. Dose-ratio analysis of naloxone's antagonism of phenoxybenzamine antinociception gave a pA2 value of 6.15, similar to that found for the benzomorphinan mixed agonist-antagonists. This is in agreement with the sodium response ratio found for phenoxybenzamine, 4.3, in in vitro assays of phenoxybenzamine inhibition of 3H-naloxone binding to mouse brain homogenate (5). These findings suggest that phenoxybenzamine binds to the opiate receptor both in vivo as well as in vitro in a manner similar to the mixed agonist-antagonists.  相似文献   

17.
Preliminary results on the binding of [3H]Boc[Nle28,31]CCK27?33, designated [3H]Boc[diNle]CCK7, on mouse brain and rat pancreas membranes are presented. This new ligand for CCK receptors possesses a high specific activity (144 Ci/mmole), and binds in a saturable manner to mouse brain (Kd = 0.49 nM, Bmax = 49 fmoles/mg protein) and rat pancreas (Kd = 4.4 nM, Bmax = 696 fmoles/mg protein). Unlabelled Boc[diNle]CCK7 displaces [125I]CCK8 from its binding sites on mouse brain membranes with a high affinity, slightly superior to that of CCK8. The order of potencies to displace [3H]Boc[diNle]CCK7 from its binding sites was the same on mouse brain and rat pancreas: [3HBoc[diNle]CCK7>CCK8, Boc-CCK7> non-sulfated CCK8, the pancreas binding sites being more discriminative than the brain binding sites. Thus, [3H]Boc[diNle]CCK7 is a very promising new probe for the characterization of CCK receptors and their interaction with different CCK fragments.  相似文献   

18.
The fluorescent and photo-affinity derivatives of enkephalin, Tyr-D-Ala-Gly-Phe-Leu-Lys-Nε-Rhodamine (II) and Tyr-D-Ala-Gly-Phe-Leu-Lys-Nε-nitro-azidophenyl (III), were prepared by conventional methods followed by chemical modification. The two peptides inhibit the binding of 125I-labeled enkephalin to brain membrane preparations, with apparent IC50 values of 5.9 nM and 5.5 nM for peptides II and III, respectively. The iodinated derivative of peptide III binds specifically to brain membrane preparations with an apparent Kd of about 2.1 × 10?9M.  相似文献   

19.
Identification of opiate receptor binding in intact animals.   总被引:1,自引:0,他引:1  
C B Pert  S H Snyder 《Life sciences》1975,16(10):1623-1634
After intravenous administration of 3H-naloxone to rats, particulate bound radioactivity accumulated in the brain is selectively associated with opiate receptor binding sites, providing a means of labeling the opiate receptor in vivo. The regional distribution of 3H-naloxone bound in vivo closely parallels regional differences in opiate receptor binding in vitro with highest levels in the corpus striatum, negligible receptor-associated binding in the cerebellum and intermediate levels in other regions. 3H-Naloxone binding in vivo is saturable with the same total number of binding sites determined in vivo as by in vitro procedures. Nalorphine is markedly more potent than morphine in inhibiting 3H-naloxone binding in vivo and non-opiates are ineffective. The half-life for dissociation of 3H-naloxone bound to particles in vivo is the same as its dissociation rate after binding occurs in vitro, and sodium stabilizes 3H-naloxone bound in vivo from initial rapid dissociation as predicted from the known properties of the opiate receptor in vitro.  相似文献   

20.
Analgesia, opiate receptor binding, and neurochemical effects of kyotorphin (tyrosine-arginine) were studied in the rat. It was found that while kyotorphin, in vivo, causes naloxone reversible analgesia, and affects dopamine metabolism and acetylcholine turnover in the same manner as do morphine and other opiate agents, the dipeptide does not bind to mu, delta or kappa opiate receptors in vitro. Taken together, these data support the concept that there is an indirect action of kyotorphin on opiate receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号