首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The influence of cholesterol on simple and facilitated transport processes across the membrane of intact human erythrocytes was studied after graded depletion or enrichment of membrane cholesterol by incubation of the cells in phospholipid or phospholipid/cholesterol suspensions.
1. 1. The carrier-mediated transfer of L-lactate and of L-arabinose proved to be enhanced by cholesterol. In the case of L-lactate, a decrease in Km seems to be involved in this effect. In contrast, the self-exchange of SO42−, mediated by the inorganic anion-exchange system, and the simple diffusion of erythritol via the lipid phase of the membrane are inhibited by cholesterol.
2. 2. Reversibility of these two opposite effects of cholesterol was demonstrated by measurements on cells depleted again after cholesterol enrichment and enriched again after previous depletion.
3. 3. Certain phospholipids used for preparing the lipid dispersions that are required for cholesterol variation have effects on permeability of their own, due, for example, to traces of contaminants. A discrimination of such artifacts from the effects of cholesterol is only possible by demonstrating reversibility.
4. 4. The opposite effects of cholesterol on various facilitated transfer processes, which have a correlation in the opposite effects of other modifications of the membrane lipid phase (Deuticke, B., Grunze, M. and Haest, C.W.M. (1979) Alfred Benzon Symposium 14, Munksgaard, Copenhagen, in the press), are indicative of different types of lipid-protein interaction in the erythrocyte membrane.
Keywords: Cholesterol; Permeability; Anion transport; Monosaccharide; Monocarboxylate (Erythrocyte membrane)  相似文献   

2.
1. Extracts of the human erythrocyte membrane have been prepared by solubilization with Triton X-100 and analysed by electrophoresis and gel filtration techniques. 2. The extracts have been incorporated asymmetrically into lecithincholesterol-n-decane planar bilayers. 3. The electrical characteristics and glucose permeabilities of the bilayers have been measured. 4. The extracts increased the electrical conductance of the bilayers and also markedly enhanced the D-glucose permeability but not the L-glucose permeability. 5. The enhanced D-glucose permeability was inhibited by monosaccharide transport inhibitors. 6. The results support the claim that a monosachharide facititated diffusion system has been set-up in vitro which has many of the characteristics of the transport system in the human erythrocyte membrane. 7. The data indicates that the trans membrane polypeptides of band 3 of the electrophoretogram of the erythrocyte membrane proteins (notation of Fairbanks, G., Steck, T.L. and Wallach, D.F.H. (1971) Biochemistry 10, 2606-2616) are implicated in D-glucose transport, although the possibility that relatively minor component of the membrane could be responsible for glucose transport cannot be eliminated.  相似文献   

3.
Treatment of intact human erythrocytes with trypsin had no effect upon either the rate of hexose transport or the binding of cytochalasin B to the transport system. In contrast, proteolysis of inside-out vesicles prepared from human erythrocyte membranes inactivated both hexose transport and cytochalasin B binding. When purified hexose transporter, reconstituted into phospholipid vesicles of undetermined size, was treated with trypsin, approx. 50% of the cytochalasin B binding activity was lost. This loss correlated with a decrease in the amount of the transporter polypeptide, as assayed by gel electrophoresis. These results show that the orientation of the transporter can be established through trypsin treatment in conjunction with cytochalasin B binding. Small unilamellar vesicles containing transporter were prepared by sonication of larger species and by a cycle of cholate solubilization and removal of the detergent. In the former case, the transporter orients almost randomly, whereas in the latter approx. 75% of the transporters have the cytoplasmic domain extemal.  相似文献   

4.
Gunnar Fröman 《FEBS letters》1982,143(2):220-224
Absorption, circular dichroism, electron spin resonance and resonance Raman spectra of a blue copper protein, plantacyanin from cucumber peel have been measured and these spectral properties compared with those of other blue copper proteins. From the spectral properties, amino acid analysis and redox potential, we discuss the active site and redox properties of this protein.  相似文献   

5.
Cholate extracts of human erythrocyte membranes (Lundahl, P., Acevedo, F., Fröman, G. and Phutrakul, S. (1981) Biochim. Biophys. Acta 644, 101–107) were fractionated by molecular sieve chromatography on Sepharose 6B, and the size and molecular weight of the active d-glucose transporter were estimated. The eluent contained 10 or 12.5 mM cholate, since higher concentrations inactivated the glucose transporter, and lower concentrations resulted in aggregation. The chromatographic distribution of the transport activity was reproducible, but was broader than one would expect for a homogeneous component. In the presence of 20 mM EDTA and 5 mM dithioerythritol, a combination which affords a highly stable transport activity, a molecular weight of 400 000 ± 20 000 (Stokes' radius 5.9 nm) was estimated for the smallest active component. This value represents an upper limit, since the molecular weight of a non-spherical component would have been overestimated, and since bound cholate was calculated to represent about 12% of the molecular weight. The activity was completely recovered upon rechromatography. In 10 mM EDTA and 10 mM 2-mercaptoethanol, the estimated molecular weight of the smallest active component was 210 000 ± 15 000, and this component was not stable upon rechromatography in 10 mM EDTA and 10 mM 2-mercaptoethanol. In the absence of chelating and reducing agents, cholate extracts from membranes which had been kept for 5 days at 4°C showed three additional active components smaller than 200 000 in molecular weight. Most of the phospholipids eluted later than the active components of molecular weight 400 000 or 210 000, in all experiments. Electrophoretic analysis in dodecyl sulfate of the chromatographic eluents indicates that at least one of the band 3-polypeptides (nomenclature according to Steck, T.L. (1974) J. Cell Biol. 62, 1–19) is a component of the active transporter. This band 3-polypeptide, which we denote 3.3, has an apparent molecular weight of 88 000. The stable transporter of molecular weight 400 000 might be a tetramer of the 3.3-polypeptide. Alternatively, a dimer of the 3.3-polypeptide in complex with lipids might account for this molecular weight. If the 3.3-polypeptide is the transporter subunit and if it binds cytochalasin B with high affinity (1.8 · 105 sites/cell) the recovered activity per 3.3-polypeptide is around 40% A degradation product of the 3.3-component (possibly a 4.5-component) might account for the unstable active transporter of molecular weight 210 000.  相似文献   

6.
The cytochalasin B binding component of the human erythrocyte monosaccharide transport system has been purified. The preparation appears to contain one major protein with an apparent polypeptide chain molecular weight of 55 000 and about 0.4 binding sites per chain. Cytochalasin B binds to the reconstituted preparation with a dissociation constant of 1.3·10?7 M, a value which is similar to that reported for the transport system in the intact erythrocyte.  相似文献   

7.
We have characterized the asymmetric effect of Ca2+ on passive K+ permeability in erythrocyte membranes, using inside out and right-side out vesicles. Ca2+, but not Mg2+, can induce an increase in K+ uptake in inside out vesicles. The half-maximal concentration of Ca2+ required to induce the K+ uptake is 0.2 mM, and the permeability increase is not specific for K+. Thus, the Ca2+-induced permeation process in inside out vesicles is changed from that in the energy-depleted intact cell which requires only micromolar concentrations of Ca2+ and is specific for K+. Removal of spectrin had no effect on the vesicle permeability increase due to Ca2+. Studies with N-ethylmaleimide show that the vesicle channel opening is mediated by a protein and passage is controlled by sulfhydryl groups; furthermore, the Ca2+-induced vesicle pathway is distinct from the normal channel for passive K+ leak in the absence of Ca2+. The protein is sensitive to its phospholipid environment since removal of easily accessible phospholipid head groups on the cytoplasmic face of the vesicles inhibits the Ca2+-stimulated channel opening.  相似文献   

8.
The permeability of inside-out and right-side-out vesicles from erythrocyte membranes to inorganic cations was determined quantitatively. Using 86Rb as a K analog, we have measured the rate constant of 86Rb efflux from vesicles under equilibrium exchange conditions, using a dialysis procedure. The permeability coefficients of the vesicles to Rb are only about an order of magnitude greater than that of whole erythrocytes. Furthermore, we have measured many of the specialized transport systems known to exist in erythrocytes and have shown that glucose, sulfate, ATP-dependent Ca and ATP-dependent Na transport activities are retained by the vesicle membranes. These results suggest that inside-out and right-side-out vesicles can be used effectively to study transport properties of erythrocyte membranes.  相似文献   

9.
In order to investigate the influence of membrane lipids on transport via the protein domain of the erythrocyte membrane, a number of facilitated diffusion processes was studied by tracer flux techniques in whole cells after cleavage of up to 65% of the phosphatidylcholine or the sphingomyelin by phospholipase A2 from Naja naja or bee venom, or by sphingomyelinase, respectively.The mediated fluxes of l-arabinose, which is transported by the glucose carrier, and of l-lactate, which uses a specific monocarboxylate carrier, were markedly inhibited by cleavage of either phosphatidylcholine or sphingomyelin. These phospholipid dependencies are in line with earlier data on cholesterol dependencies (Deuticke, B. (1977) Rev. Physiol. Biochem. Pharmacol. 78, 1–97). They can only in part be explained by changes of membrane fluidity. More specific interactions of the degradation products with the carrier proteins seem also to play a role.Sulfate and oxalate transfer, which proceed via the inorganic anion-exchange system, are essentially unaffected by cleavage of phosphatidylcholine and less sensitive to sphingomyelin cleavage than the two other processes. This also agrees with earlier data on cholesterol independency of sulfate transfer. The inorganic anion-exchange protein thus seems to be less dependent on the surrounding lipids in its conformation and its mode of action than the two other carriers.  相似文献   

10.
In pigeon erythrocyte membrane, the β-adrenergic receptor and the enzyme adenylate cyclase can be uncoupled in two different ways depending on the type of drug used.Cationic drugs: chlorpromazine, methochlorpromazine, tetracaine, n-octylamine and a neutral alcohol, octanol, abolished alprenolol receptor binding ability and in the same range of concentration of the drug, sensitized adenylate cyclase to fluoride or Gpp(NH)p stimulation. Anionic drugs: di- and trinitrophenols, indomethacin and octanoic acid did not affect the total number of β-adrenergic receptor sites and, with the exception of trinitrophenol, did not change the association constant for alprenolol but they abolished the stimulation of adenylate cyclase by isoproterenol, fluoride or Gpp(NH)p. These modifications of the adenylate cyclase system occurred in a range of drug concentration where cell shape and protection against hemolysis were also affected.As chemical composition varies widely from one drug to another, it is suggested that these effects are largely nonspecific and mediated by the lipid bilayer. They are probably related to a preferential sidedness of action of the drugs in the lipid bilayer, displaying the role of an asymmetric control of the adenylate cyclase system in the membrane by the two halves of this bilayer.  相似文献   

11.
The kinetic properties of the mediated transport of chloroquine in human erythrocytes are investigated. The high rates of translocation across the cell membrane and high adsorbance properties to glass surfaces have led to the development of new techniques for measuring initial rates of transport. Three different methodological procedures are used to accomplish a complete kinetic characterization of the system. All measurements were done at 25°C. Under zero-trans conditions the system displays complete symmetry, the Michaelis constants being 39.2±2.4 μM for influx and 36.6±5.6 μM for efflux. The respective maximal velocities are 206.4±36.0 μM·min?1 and 190.0±7.8 μM·min?1. Under equilibrium-exchange conditions the Michaelis constant is 108.6±15.6 μM and the maximal velocity is 630.3±50.4 μM·min?1. This 3-fold increase in both K and V over the zero-trans values indicates that the rate-limiting step in the transport of chloroquine is the movement of the unloaded carrier. The kinetic data are consistent with the prediction of a simple carrier model.  相似文献   

12.
Quinolinic acid (2,3-pyridinedicarboxylic acid), an endogenous metabolite of l-tryptophan, reportedly via the kynurenine pathway, has been previously shown to possess neurotoxic properties when injected into rat striatum (Schwarcz R., Whetsell, W.O., Jr. and Mangano R.M. (1983) Science 219, 316–318) and to alter the physical state of human erythrocyte membrane proteins, as judged by ESR spectroscopy (Farmer, B.T., II and Butterfield, D.A. (1984) Life Sci. 35, 501–509). Both the morphologic and ESR studies employed nicotinic acid as one comparative control and found that the effect of quinolinic acid is significantly different from that of nicotinic acid. In the present study, we report that the effects of several structural analogues and positional isomers of quinolinic acid on the ESR parameter associated with the physical state of membrane proteins in human erythrocyte membranes suggest the following conclusions concerning the structure-effect relationship of quinolinic acid: The alteration in the conformation of membrane proteins: (1) requires the presence of two carboxylic acid groups; (2) is independent of their relationship to one another on the pyridine ring; (3) is slightly dependent on the presence of the pyridine nitrogen atom but is independent of the positional relationship of the two carboxylic acid moieties to the heteroatom; and (4) seems to depend upon the presence of restricted internal motion derived from the aromaticity in these compounds.  相似文献   

13.
R Hiruma  A Yamaguchi  T Sawai 《FEBS letters》1984,170(2):268-272
The lipid-bilayer permeability of cephalosporins was extensively suppressed by addition of lipopolysaccharide to liposomal membrane in proportion to the hydrophobicity of the drugs. This suggests that the polysaccharide chain layer contributes to the barrier function. The importance of the polysaccharide chain in the barrier function was also supported by the fact that the permeability to Rd-type lipopolysaccharide-containing liposomes showed essentially the same dependency on the hydrophobicity of the cephalosporins as that of the lipopolysaccharide-free liposomes. In this case the permeability of the cephalosporins was proportional to their hydrophobicity. Similar lipopolysaccharide effect was also observed in the permeation of penicillins.  相似文献   

14.
A commercially available enzymatic assay (Boehringer Monotest) was modified to allow a rapid and sensitive determination of cholesterol in membrane lipid extracts. This was achieved by adding 0.5% Triton X-100 to the reagent solution. The detergent did not interfere with the assay. The relationship between the amount of cholesterol per assay and the absorbance at 500 nm was linear up to 100 μg. The recovery in the assay was better than 95%. The assay was applied to the determination of cholesterol in erythrocyte membrane lipid extracts.  相似文献   

15.
The usefulness of isolated Ca2+-tolerant myocytes as a cellular model system for investigating modulation of monosaccharide transport by insulin was investigated. We have found that the isolation technique described by Haworth et al. (Haworth, R.A., Hunter, D.R. and Berkoff, H.A. (1980) J. Mol. Cell. Cardiol. 12, 715–724), with some minor modifications, consistently gave the highest yield of quiescent, rod-shaped myocytes which maintained their integrity in the presence of 2 mM calcium. Using 3-O-methylglucose, a non-metabolized sugar, transport was shown to possess saturability, substrate stereospecificity, competition and countertransport; all of which have been thoroughly established for d-glucose transport in other systems. The apparent Km of transport ranged from 2.3 to 3.5 mM. Insulin (10 nM) caused a small but significant increase in Km and a 2–3-fold increase in Vmax. These results suggest that this myocyte preparation will provide a useful model for studying the transport-related effects of insulin as well as current hypotheses regarding the mechanism of insulin modulation of transport at the cellular level.  相似文献   

16.
The effect of transit time on the electrical transport noise of a closed one-barrier model at equilibrium as proposed by Kolb and Läuger [6] is studied using the master-equation approach. A transit time is the time for an ion to cross the energy barrier (membrane interior) when the energy of the ion reaches the barrier height. Both the time correlation function and the noise power spectrum are obtained as functions of the transit time of the ions. Possible effects of transit time on the time correlation function of transport of dipicrylamine ions in lipid bilayers as reported by Bruner and Hall [13] and on the noise power spectrum as reported by Kolb and Läuger [6] are discussed.  相似文献   

17.
A water-soluble Mg2+-ATPase previously reported (White, M.D. and Ralston, G.B. (1976) Biochim. Biophys. Acta 436, 567–576) has been purified from human erythrocyte membranes. The purified enzyme has a molecular weight of 575 000; the apparent minimum molecular weight was 100 000, corresponding to a soluble protein of the component 3 region. The Km value for ATP was 1 mM and apparent Km for Mg2+ was 3.6 mM. By means of histochemical activity staining in acrylamide gels it was shown that the purified ATPase preparation could be inhibited by Cd2+ and Zn2+ salts, p-chloromercuribenzoate and N-ethylmaleimide, known inhibitors of membrane endocytosis.  相似文献   

18.
Erythrocytes prepared from riboflavin- and tocopherol-deficient (RT?) and from control rats were used to investigate the mechanism of oxidative hemolysis by the factors of favism. RT? erythrocytes have a defense system against the oxidative stress which is blocked either where regeneration of GSH occurs or the scavenging of the radicals from the membrane is prevented. The oxidative factors used were isouramil, divicine and diamide. When RT? erythrocytes were treated with isouramil, GSH decreased to undetectable levels and was not regenerated. Complete hemolysis occurred, but no oxidation of SH groups of membrane proteins or formation of spectrin polymers was detected. A similar effect was observed with diamide. However, SH groups of membrane proteins were completely oxidized and spectrin polymers were formed. Extensive lipid peroxidation was also detected together with a 30% fall in the arachidonic acid level. Control erythrocytes treated with either isouramil or diamide were not hemolyzed. When treated with isouramil, after a fall in the first few minutes, the GSH level was completely regenerated after 20 min. Incubation with diamide caused extensive oxidation of SH groups of membrane proteins and formation of spectrin polymers. No lipid peroxidation was detected after treatment with isouramil, but the same decrease of arachidonic acid occurred as in RT? erythrocytes. These results support the hypothesis that oxidative hemolysis by the factors of favism is caused by uncontrolled peroxidation of membrane lipids.  相似文献   

19.
Permeability coefficients (P m ) across planar egg lecithin/decane bilayers and bulk hydrocarbon/water partition coefficients (K whc) have been measured for 24 solutes with molecular volumes, V, varying by a factor of 22 and P m values varying by a factor of 107 to explore the chemical nature of the bilayer barrier and the effects of permeant size on permeability. A proper bulk solvent which correctly mimics the microenvironment of the barrier domain was sought. Changes in P m /Kwhc were then ascribed to size-dependent partitioning and/or size-dependent diffusivity. The diffusion coefficient-size dependency was described by D barrier = D 0 /V n . When n-decane was used as a reference solvent, the correlation between log P m /K whc and log V was poor (r = 0.56) with most of the lipophilic (hydrophilic) permeants lying below (above) the regression line. Correlations improved significantly (r = 0.87 and 0.90, respectively) with more polarizable solvents, 1-hexadecene and 1,9-decadiene. Values of the size selectivity parameter n were sensitive to the reference solvent (n = 0.8 ± 0.3, 1.2 ± 0.1 and 1.4 ± 0.2, respectively, for decane, hexadecene, and decadiene). Decadiene was selected as the most suitable reference solvent. The value for n in bilayer transport is higher than that for bulk diffusion in decane (n = 0.74±0.10), confirming the steep dependence of bilayer permeability on molecular size. Statistical mechanical theory recently developed by the authors suggests that a component of this steep size dependence may reside in size-dependent solute partitioning into the ordered chain region of bilayers. This theory, combined with the above diffusion model, yielded the relationship, P m /K Whc=D 0 exp(V)V n . A fit of the experimental data to this model gave the best fit (r=0.93) with = 0.0053±0.0021 and n=0.8 ± 0.3, suggesting that both diffusion and partitioning mechanisms may play a role in determining the size dependence of lipid bilayer permeabilities.This work was supported by a research grant from Glaxo, Inc. Instrumentation support was provided by a Biomedical Research Support Grant from the College of Pharmacy, University of Utah, and by a Faculty Research Grant from the University of Utah. The technical assistance of Barbara L. Hoesterey, who determined some of the partition coefficients, is gratefully acknowledged.  相似文献   

20.
CaCl2 or MgCl2 but not NaCl enhances the soyabean lectin-induced agglutination of liposomes prepared from total lipids of erythrocyte membranes. The addition of purified phosphatidylserine to the total lipids of erythrocyte membranes before the formation of liposomes inhibits lectin-induced agglutinability of the preparation in the absence of CaCl2, but not in its presence. When preformed phosphatidylserine liposomes are added to liposomes of total lipids of erythrocyte ghosts, they do not inhibit agglutination, indicating that phosphatidylserine does not inhibit the lectin directly. CaCl2 or MgCl2 but not NaCl also stimulates the soyabean lectin-induced agglutination of human erythrocyte membranes.Electron micrographs indicate that the liposome preparations are multilamellar and separate even in the presence of CaCl2. When such liposomes are treated with lectin with or without CaCl2, the electron micrographs show significant agglutination without apparent fusion. The reversal of the agglutination of liposomes by specific sugars followed by turbidimetric and electron microscopic techniques supports the conclusion that CaCl2 stimulated lectin-induced agglutination is unaccompanied by fusion.The stimulation by divalent cations of lectin-induced agglutination of erythrocyte ghosts or of our liposomes may be due to a decrease in apparent surface charge of these membrane systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号