首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fluorescence intensity of trans-parinaric acid as a function of the temperature indicates a phase transition in bovine heart mitochondrial inner membranes below 0 degrees C. The comparison of the dye fluorescence intensity in intact inner mitochondrial membranes and in vesicles from extracted phospho lipids of mitochondria revealed a similar intensity increase with decreasing temperature. A synthetic phospholipid system of dioleoyl phosphatidylcholine was investigated because of its low phase transition temperature and showed a very definite intensity change at -25 degrees C. trans-Parinaric acid in membrane systems probes an environment of intermediate polarity; this was found from the excitation and emission spectra and from fluorescence decay.  相似文献   

2.
As ascertained by freeze-fracture electron microscopy, imipramine prevents lateral phase separation from taking place in inner mitochondrial membranes at sub-zero temperatures. Electron spin resonance (ESR) measurements performed on mitochondrial membranes labeled with the N-oxyl-4′,4′-dimethyloxazolidine derivative of 16-ketostearic acid, show that the spin probe motion is markedly inhibited below 0°C and that 5 mM imipramine attenuates the temperature effect. These results are explained by supposing that imipramine is able to decrease the transition temperature of the inner mitochondrial membrane lipids as it does for simple lipid systems.  相似文献   

3.
Garden lizards, Calotes versicolor, were acclimated to three different temperatures, i.e., 16°C, 26°C and 36°C for a period of 30 days in ‘walk-in-environmental chambers’. The phospholipid profile and fatty acid pattern were analysed in the hypothalamus and brain of the acclimated animals. Hypothalamic and brain membrane phospholipids were prepared and their phase-transition temperatures were recorded using differential scanning calorimetry. Acclimation temperature, phospholipid composition, fatty acids of these phospholipids and the physical state and fluidity of the specific model membranes of hypothalamus (and brain) are intimately inter-related. Evidence is presented for the first time to show a possible correlation between acclimation temperature and phase-transition temperature of hypothalamic phospholipid membrane. A direct physico-chemical basis is suggested for the thermoregulatory process of hypothalamus leading to a better understanding of our knowledge on the origin of thermoregulation.  相似文献   

4.
V. Mikeš  V. Dadák 《BBA》1983,723(2):231-239
The interaction of rat liver and bovine heart mitochondria with a series of fluorescent, cationic berberine derivatives varying in the length of alkyl chain has been investigated. An increase in the hydrophobicity of the derivative was accompanied by a larger value of the partition coefficient and by binding to a more hydrophobic region of the inner mitochondrial membrane. It was found that berberines could be used as sensitive indicators of processes which take place on the outer surface of the mitochondrial membrane; the greatest (15-fold) increase in fluorescence was obtained with 13-methylberberine in the energized state of mitochondria. The fluorescence increase was due to the increase in fluorescence quantum yield although a small increase in the amount of bound derivative could also be detected upon energization. The fluorescence was linearly dependent on the magnitude of the membrane potential. In parallel with an observed fluorescence enhancement a considerable decrease in rotational mobility was found. We suggest that berberines move in the inner membrane according to the polarity of the membrane potential; consequently, deeper immersion in the less polar region in the energized state brings about a larger fluorescence increase. More hydrophobic derivatives inhibited NAD-linked respiration in rat liver mitochondria but exerted no effect on succinate oxidation up to 10 μM concentration.  相似文献   

5.
A statistical thermodynamic model of phospholipid bilayers is developed. In the model, a new concept of a closely packed system is applied, i.e., a system of hard cylinders of equal radii, the radius being a function of the average number of gauche rotations in a hydrocarbon chain. Using this concept of a closely packed system, reasonable values are obtained for the change in specific volume at the order-disorder transition of lecithin bilayers. In addition to interactions between the lipid matrix and water molecules, between the head groups themselves and between hydrocarbon chains, as well as the intramolecular energy associated with chain conformation, the Hamiltonian of the membrane also includes the energy of the pressure field. Thus, the phase transition of phospholipid membranes induced not only by temperature hut also by hydrostatic pressure is described by this model simultaneously. In accordance with the experimental results, a linear relationship is obtained between the phase transition temperature and phase transition pressure. The other calculated phase transition properties of lecithin homologues. e.g., changes in enthalpy, surface area. thickness and gauche number per chain are in agreement with the available experimental data. The ratio of kink to interstitial conduction of bilayers is also estimated.  相似文献   

6.
S. H. Gwak  F. D. Yang  L. Yu  C. A. Yu 《BBA》1987,890(3):319-325
(1) Dibromothymoquinone (DBMIB) inhibits antimycin A-sensitive ubiquinol-cytochrome c reductase activity; the maximal inhibition is 90%. (2) DBMIB alters the EPR spectra of reduced iron-sulfur protein in intact ubiquinol-cytochrome c reductase. The maximal spectral change occurs with 60 mol inhibitor per mol cytochrome c1 in the reductase. (3) DBMIB causes little alteration in the EPR characteristics of iron-sulfur protein when ubiquinol-cytochrome c reductase is delipidated. (4) When delipidated ubiquinol-cytochrome c reductase is replenished with phospholipid, the effect of DBMIB reappears. However, when DBMIB is added to delipidated protein prior to replenishment with phospholipid, very little spectral alteration is observed. (5) DBMIB does not alter the EPR spectra of purified iron-sulfur protein, with or without phospholipid in the preparation. (6) Reduced DBMIB does not alter the EPR characteristics of iron-sulfur protein in intact or delipidated ubiquinol-cytochrome c reductase. (7) Cysteine and other thiol compounds can reverse the spectral alternation caused by DBMIB. This reversal probably results from the reduction of DBMIB.  相似文献   

7.
31P-NMR studies of intact functional rat liver mitochondria at 37°C demonstrate that the large majority (?95%) of endogenous phospholipids exhibit motional properties consistent with bilayer structure. This property is unaffected by oxidative phosphorylation processes or the presence of Ca2+.  相似文献   

8.
Studies were made to determine whether the energy-dependent binding of ethidium to the mitochondrial inner membrane reflects the membrane potential or the energization of localized regions of the membrane.The number of binding sites of ethidium in mitochondria energized with ATP was 72 nmol/mg protein and decreased with increase in the amount of the ATPase system (F1 · Fo) inactivated by oligomycin. These findings clearly show that the energy-dependent binding of ethidium to the mitochondrial inner membrane energized with ATP does not reflect the membrane potential, in good accord with the previous conclusion (Higuti, T., Yokota, M., Arakaki, N., Hattori, A. and Tani, I. (1978) Biochim. Biophys. Acta 503, 211–222), but that ethidium binds to localized regions of the energized membrane that are directly affected by ATPase (F1), reflecting the localized energization of the membrane by ATP.  相似文献   

9.
Incubations of rat liver inner mitochondrial membranes with liposomes prepared from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol resulted in a considerable enrichment of the cholesterol composition of these membranes. This enrichment is not accompanied by an alteration in the membrane phospholipid content or fatty acid composition. The exogenous cholesterol appears to be integrated into the membrane structure because it has effects consistent with the known properties of this sterol in other natural and artificial membrane systems.Differential scanning calorimetry on both intact membranes and extracted lipids showed that as the ratio of cholesterol to phospholipid was increased, the endotherm corresponding to the lipid phase transition was reduced. Freeze-fracture electron microscopy of the native membranes showed that intramembranous particles are randomly distributed above the phase transition temperature. Below this temperature large smooth areas, believed to correspond to lipid in the gel state from which proteins have been excluded, can be observed. In the presence of high concentrations of cholesterol the fracture faces observed below the lipid transition temperature show no regions of phase segregation, an observation consistent with previous studies using pure lipids where cholesterol was observed to prevent the lipid undergoing a cooperative phase transition.The results are discussed in terms of the observed low concentrations of cholesteorl in normal liver inner mitochondrial membranes and the distribution of cholesterol within the liver cells.  相似文献   

10.
9-(2-Anthryl)-nonanoic acid, a newly synthesized photoactivable molecule, is shown to be incorporated into the membrane lipids of the bacterium Micrococcus luteus, through the regular metabolic pathway. This incorporation, which occurs at the sn-1 position exclusively and without any degradation or elongation of the anthracene fatty acid, is accompanied by an upward shift of the chain length of the other fatty acids.  相似文献   

11.
Using 1H-NMR of small unilamellar vesicles in the presence of the lanthanide probe ion Pr3+, the effects of ethanol, diethyl ether and chloroform on various mechanisms of channel-mediated transport were studied. The mechanisms include channel formation by the polypeptide Alamethicin 30 and vesicular lysis at the gel to liquid-crystal phase transition of the lipid. Channel stabilisation and membrane fusion induced by sub-critical micelle concentrations of Triton X-100 were also investigated. The observation that ethanol and diethyl ether increase membrane permeability and fusion while chloroform inhibits them suggests a common locus of action on the properties and structure of channel-associated water. This conclusion is discussed in terms of current theories of general anaesthesia.  相似文献   

12.
Small unilamellar vesicles were used to measure the permeability of saturated phosphatidylcholine bilayers to glucose. The presented method circumvents most of the common restrictions of classical permeability experiments. Increasing the fatty acid chain length of the lipids reduced the permeation rate significantly. Raising the temperature above that of the lipid phase transition drastically increased membrane permeability. Arrhenius plots demonstrated the activation energy to be independent of membrane composition and the phase-state of the lipids. The permeation process is discussed in terms of a constant energy to disrupt all hydrogen bonds between permeant and aqueous solvent prior to penetrating the membrane. The magnitude of the permeability coefficient is partly determined by a unfavourable change in entropy of activation on crossing the water/lipid interface. All results indicate that the penetration of the dehydrated permeant into the hydrophobic barrier is the rate-limiting step in the permeation of glucose.  相似文献   

13.
Molecular relaxation fluorescence methods were applied to analyze the nature and characteristic times of motions of amphiphilic molecules absorbed in the polar region of a phospholipid bilayer. The fluorescence probes 2-toluidinonaphthalene-6-sulfonate and 1-anilinonaphthalene-8-sulfonate in egg phosphatidylcholine vesicles were studied. The methods of edge excitation fluorescence red shifts, nanosecond time-resolved spectroscopy, fluorescence quenching by hydrophilic and hydrophobic quenchers and emission wavelength dependence of polarization were used. The structural (dipolar) relaxation is shown to be a very rapid (subnanosecond) process. The observed nanosecond phenomena are related to translational movement of the chromophore itself towards a more polar environment and its rotation. The polar surface area of the phospholipid membrane appears to be a highly mobile liquid-like system.  相似文献   

14.
The effects of Q metabolites (Q acid-I, Q acid-II) and related compounds (dihydro Q acid-I, dehydro Q acid-II, QS-n, and their esters) on mitochondrial succinate and NADH oxidase systems were investigated. The activity restoring succinate oxidation in acetone-treated beef heart mitochondria was found to decrease with descending order of carbon number (n) of the side chain of the Q metabolites; activity was restored with Q acid-I (n = 7) to one-third as much as that with Q-7 and Q-10, but Q acid-II (n = 5) did not restore any activity. Of the related compounds with a carboxyalkyl group (QS-n), QS-16-QS-18 (n = 16–18) were found to be most active, and their activities were also correlated with n. The relationship between the restoration of activity and the partition coefficient was considered. NADH oxidation in pentane-treated beef heart submitochondrial particles could be restored with esters of low molecular weight quinones to the same extent as with Q-10, but not with the metabolites.  相似文献   

15.
Seasonal variations in the thermal response of liver mitochondrial membranes from Richardson's ground squirrels (Spermophilus richardsonii) were determined by measuring succinate-cytochrome c reductase activity and spin label motion over a temperature range of 2 °C to 35 °C. For seven summer animals from the field the Arrhenius-type plots for enzyme activity and spin label motion were biphasic indicating a transition in structure and function at 22 + 2.3°C and 23 ± 1.9°C, respectively; typical of homeothermic mammals. For 12 winter animals maintained at 19°C, the transition in structure and function was lowered to 12 ± 1.1°C and 13 ± 1.4°C, respectively. The transition for 5 of 11 winter animals which were kept at 4°C and maintained normal activity and body temperature was similar to animals maintained at 19°C, while for the other six the transition was further lowered to less than 4°C. The transition for seven winter animals which were in deep hibernation was less than 4°C. The results for liver mitochondria show that lowering of the transition in membrane structure and function occurs as a two-stage process of about 10 deg. C for each stage and that the lowering is a requisite for hibernation rather than a response to the low-body temperatures experienced during hibernation.  相似文献   

16.
The cis-isomer of parinaric acid, a naturally occurring C-18 polyene fatty acid, was incubated with brain subcellular fractions and the polarization of fluorescence increased in a time dependent manner. Greatest increases occurred in synaptosomal and microsomal membranes. This increase in polarization of fluorescence was found with the cis, but not the trans, isomer of parinaric acid and required Mg2+ or Ca2+ and was stimulated by coenzyme A and ATP. Synaptosomes were incubated with cis-parinaric acid and lipids were extracted and examined by high performance liquid chromatography. The highest incorporations of cis-parinaric acid were found in phosphatidylcholine (71%) and phosphatidylethanolamine (20%) while only traces were found in phosphatidylserine and phosphatidylinositol. [3H]Oleic acid was also incorporated into membrane phospholipids and unlabeled oleic acid blocked incorporation of cis-parinaric acid. It is proposed that cis-parinaric acid, like fatty acids normally found in brain, is incorporated into membrane phospholipids by an acyl-CoA acyltransferase. The presence of this enzyme in nervous tissue may make it possible to easily introduce fluorescent fatty acid probes into membrane phospholipids and to thereby facilitate study of membrane-mediated processes.  相似文献   

17.
Proton nuclear magnetic resonance spectra at 360 MHz of small sonicated distearoyl phosphatidylcholine vesicles show easily distinguishable resonances due to choline N-methyl head-group protons located in the inner and outer bilayer halves. A study of the chemical shift of these resonances as a function of temperature reveals that the splitting between them increases below the phase transition. This occurs as a result of an upfield shift of the inner layer resonance at the phase transition. Consideration of the possible causes of this effect results in the conclusion that, at the phase transition, there is a change in the organization of the inner layer head-groups which does not occur for the outer layer head-groups.  相似文献   

18.
Single mitochondria show the spontaneous fluctuations of DeltaPsim. In this study, to examine the mechanism of the fluctuations, we observed DeltaPsim in single isolated heart mitochondria using time-resolved fluorescence microscopy. Addition of malate, succinate, or ascorbate plus TMPD to mitochondria induced polarization of the inner membrane followed by repeated cycles of rapid depolarizations and immediate repolarizations. ADP significantly decreased the frequency of the rapid depolarizations, but the ADP effect was counteracted by oligomycin. On the other hand, the rapid depolarizations did not occur when mitochondria were polarized by the efflux of K(+) from the matrix. The rapid depolarizations became frequent with the increase in the substrate concentration or pH of the buffer. These results suggest that the rapid depolarizations depend on the net translocation of protons from the matrix. The frequency of the rapid depolarizations was not affected by ROS scavengers, Ca(2+), CsA, or BA. In addition, the obvious increase in the permeability of the inner membrane to calcein (MW 623) that was entrapped in the matrix was not observed upon the transient depolarization. The mechanisms of the spontaneous oscillations of DeltaPsim are discussed in relation to the matrix pH and the permeability transitions.  相似文献   

19.
Primaquine (PQ) is the only commercially available drug that clears dormant liver stages of malaria and blocks transmission to mosquito vectors. Although an old drug, much remains to be known about the mechanism(s) of action. Herein we develop a fluorescent tagged PQ to discover cellular localization in the human malaria parasite, Plasmodium falciparum. Successful synthesis and characterization of a primaquine-coumarin fluorescent probe (PQCP) demonstrated potency equivalent to the parent drug and the probe was not cytotoxic to HepG2 carcinoma cells. Cellular localization was found primarily in the cytosol of the asexual erythrocytic and gametocyte stages of parasite development.  相似文献   

20.
The fluorescence quenching of the n-(9-anthroyloxy) (AO) fatty acid probes has been investigated in aqueous dispersions, vesicles of egg phosphatidylcholine and vesicles formed from red cell ghosts. Negatively charged (KI), neutral (acrylamide) and positively charged (CuSO4) quenchers were used to monitor the location of the probes. The fluorescence of the probes, with the exception of the shortest chain (11-(9-anthroyloxy)undecanoic acid) is not quenched by acrylamide when associated with vesicles. This indicates that in association with vesicles, the 9-anthroyloxy moiety of the long chain probes is buried within the hydrocarbon region and thus well shielded from the aqueous phase. Measurements with KI indicate that the probes are present in the membrane at depths corresponding to the position of the 9-anthroyloxy moiety on the fatty acid, and that the quencher itself forms a concentration gradient within the membrane. Very little or no CuSO4 quenching was observed for n-(9-anthroyloxy)stearic acid probes (n-AS)with n > 2, suggesting that in these vesicles Cu2+ does not significantly penetrate the bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号