首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microvillous membrane of human placenta is in direct contact with maternal blood and thus plays a vital role in many essential functions of the placenta. As an initial step in understanding the membrane proteins, and their relationship to these functions and to the structure of the membrane, we have investigated an isolated membrane preparation. Ten major peptide bands and an approximately equal number of minor bands were seen with sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Sialoglycoproteins were labeled with periodate (PA-3H) borohydride and external surface components with lactoperoxidase-[125I] (LP-125I). One principal (69 000 mol. wt) and several minor (100 000, 45 000, and 38–40 000 mol. wt) bands were labeled as Sialoglycoproteins and found to be exposed on the surface of the membrane. Approx. 50% of the membrane protein and all of the sialic acid was tightly bound to membrane lipid and resistant to extraction with dimethyl maleic anhydride (DMMA). Electron microscopy demonstrated extraction by DMMA of microfilaments presumptively identified as actin and other electron dense components from the villous core. The extracted supernate and the residual pellet differed markedly in protein composition. The supernatant contained bands of 180 000, 115 000, 85 000, 70–72 000, 45 000, and 38–40 000 mol. wt whereas the lipid pellet contained components of 200 000, 150 000, 100 000, 69 000, and 64 000 mol. wt. The lipid matrix with which these proteins were associated contained phosphatidyl choline and sphingomyelin and was similar in composition to other plasma membranes. Thus by using a variety of experimental approaches the proteins of the human placental microvillous membrane can be divided into groups based on their sialic acid content, exposure on the external surface, tightness of binding to the membrane lipid, and relation to membrane structure.  相似文献   

2.
Lens membranes, purified from calf lenses, have been labeled by covalent cross-linking to membrane-bound 125I-calmodulin with dithiobis(succinimidyl propionate). Electrophoretic analysis in sodium dodecyl sulfate demonstrated two major 125I-containing products of Mr = 49 000 and 36 000. That the formation of these two components was specifically inhibited by unlabeled calmodulin, or calmodulin antagonists, would indicate that the formation of these components was calmodulin-specific. The size of these two 125I-labeled components was unchanged over a range of 125I-calmodulin or dithiobis(succinimidyl propionate) concentrations indicating that they represent 1:1 complexes between 125I-calmodulin (Mr = 17 000) and Mr-32 000 and Mr-19 000 lens membrane components respectively. Although formation of both cross-linked components exhibited an absolute dependence on Mg2+, the autoradiographic intensity of these components was enhanced when Ca2+ was included with Mg2+ during the cross-linking reaction. Labeling was maximal in 10 mM MgCl2 and approximately 1 microM Ca2+. Treatment of lens membranes with chymotrypsin resulted in the cleavage of MP26 (the major lens membrane protein), with the appearance of a major proteolytic fragment of Mr = 22 000. This proteolysis was not associated with any significant change in either the size or amount of the 125I-calmodulin-labeled membrane components. These results suggest that calmodulin interacts with two membrane proteins, but not significantly with MP26, in the intact lens cell membrane. Our results indicate the need to maintain caution in interpreting direct calcium plus calmodulin effects on MP26 and lens cell junctions.  相似文献   

3.
The two different regions of the plasma membrane, i.e. apical and basolateral membranes, of intestinal epithelial cells were analyzed as to their proten components. They showed very contrasting profiles on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The apical membranes possessed several major components with apparent molecular weights larger than 108 000, most of which were also periodic acid-Schiff reagent positive. In contrast, there were no protein components with corresponding molecular weights in the basolateral membrane. The electrophoretic profile of the latter was strinkingly simple. The dominant band was assigned a molecular weight of 101 000 and was periodic acid-Schiff reagent negative. No major components were shared by the two membranes.  相似文献   

4.
Plasma membranes of splenic and thymic lymphocytes from ACI rats were analyzed for their protein and glycoprotein components by surface radioiodination with 125I and SDS-polyacrylamide gel electrophoresis. The glycoproteins were extracted with lithium diiodosalicylate, characterized and assayed with antisera to thymic antigen. Plasma membranes of both cell types showed more than 25 proteins of which 10--15 were glycoproteins. Both cells showed five major glycoproteins but their apparent molecular weights or intensities differed. Surface radioiodination showed a 120 000 daltons component, common to both cell types, and a 27 000 daltons thymus-specific component as the most exposed surface glycoproteins. Lithium diiodosalicylate extracts of the plasma membranes contained almost all of the glycoprotein components and comprised 5-6 percent of the total membrane protein and 40-50 percent of the total membrane carbohydrate, with sialic acid content in thymus twice that of the spleen cells. About 1 percent of the total plasma membrane protein and 7 percent of the total isolated glycoproteins from thymocytes were reactive with rabbit anti-rat thymocyte antiserum and the immune precipitates showed two components with apparent molecular weights of 72 000 and 27 000.  相似文献   

5.
The topography of the inner membrane of rat liver mitochondria was studied using a probe, diazobenzenesulfonate, which interacts preferentially with surface components. Inner membranes were examined both in a native orientation as found in the intact mitochondrion or in an inverted state as found in isolated inner membranes prepared by sonication.Enzyme inactivation as a consequence of diazobenzenesulfonate labeling was employed to determine the localization of a number of inner membrane activities. In inner membranes labeled on the outer surface, NADH and succinate oxidation were strongly inhibited while ATPase and ascorbate-N,N,N′,N′-tetramethyl-p-phenylene-diamine (TMPD) oxidase activities were unaffected. In inner membranes labeled on the inner surface. ATPase and succinate oxidation were inactivated while NADH oxidation and ascorbate-TMPD oxidase were unaffected. Succinate dehydrogenase was inhibited only by labeling the inner surface while NADH dehydrogenase was inhibited to a similar extent by treatment of either surface.Sodium dodecylsulfate-polypeptides (66 000 and 26 000) on the outer surface of the inner membrane and five polypeptides (80 000, 66 000, 51 000-48 000, and 26 000) on the inner surface. These results indicate a highly asymmetric localization of inner membrane components.  相似文献   

6.
Rat liver mitochondria were fractionated into inner and outer membranes and soluble intermembrane space and matrix. The protein components of these fractions were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Mitochondria contained at least 20 components ranging in molecular weights from 10 000 to 140 000. Inner membranes differed markedly from outer membranes both in number of components and size distribution. The intermembrane space contained a few polypeptide species. These were of low molecular weight. The matrix was characterized by a high molecular weight component (130 000) which comprised 30% of this fraction. A major carbohydrate-containing polypeptide with an approximate molecular weight of 93 000 was detected in outer membrane preparations.  相似文献   

7.
Evidence is presented for the presence of multiple cyclic AMP binding components in the plasma membrane and cytosol fractions of porcine renal cortex and medulla. N6-(Ethyl-2-diazomalonyl)-3',5'-adenosine monophosphate, a photoaffinity label for cyclic AMP binding sites, exhibits non-covalent binding characteristics similar to cyclic AMP in membrane and soluble fractions. Binding data for either compound to the plasma membrane fraction yields biphasic Scatchard plots while triphasic plots are obtained with the dialyzed cytosol. When covalently labeled fractions are separated on SDS-polyacrylamide gel electrophoresis, the cyclic AMP photoaffinity label is found on 49 000 and 130 000 dalton components in each kidney fraction. DEAE-cellulose and gel filtration chromatography of the labeled cortical cytosol fraction establishes that the three components suggested by the binding data correspond to two 49 000 dalton species and a 130 000 component. The 49 000 species have higher affinities for cyclic AMP than the 130 000 component (Ka(1) = 2.0 . 10(9), Ka(2) = 1.7 . 10(8), Ka(3) = 1.0 . 10(7)). The 49 000 components are associated with protein kinase activity while the 130 000 component does not exhibit protein kinase, adenosine deaminase, or cyclic nucleotide phosphodiesterase activity. Immunologic results and effects of phosphorylation and cyclic GMP on cyclic AMP binding further suggest that the 49 000 components are regulatory subunits of cyclic AMP-dependent protein kinases. Cyclic AMP binding to the 130 000 component is markedly inhibited by adenosine and adenine nucleotides, but not cyclic GMP. Thus, this component may reflect an aspect of adenosine control or metabolism which may or may not be a cyclic AMP-related cellular function.  相似文献   

8.
The number, size, solubility in chloroform/methanol and some aspects of the formation of the components labeled by radioactive amino acids in isolated mitochondria of rat liver and Zajdela hepatoma were studied. Isolated mitochondria were labeled with radioactive amino acids under various conditions, and the distribution of radioactivity in sodium dodecylsulfate-polyacrylamide gels after electrophoresis of mitochondrial membrane fraction was analysed. 1. Isolated mitochondria of rat liver and Zajdela hepatoma incroporated radioactive amino acids almost exclusively into the membrane fraction. Electrophoretic analysis of this fraction revealed the presence of 15 distinct peaks of radioactivity with corresponding apparent molecular weights of 10 000 to 58 000. The electrophoretic mobility of the labeled components was identical and the general pattern of the radioactivity distribution in the gel for the rat liver and the tumour mitochondria was very similar. 2. Components of the membrane fraction of rat liver mitochondria labeled in vitro displayed an unequal solubility in acidic (2 mM HC1) chloroform/methanol (2/1) mixture; as detected by sodium dodecylsulfate-polyacrylamide gel electrophoresis a single labeled component with apparent molecular weight of 10 000 was soluble in neutral chloroform/methanol. 3. Inverse relation was observed between amino acid incorporation activity of isolated mitochondria and the portion of the label incorporated into the component with apparent molecular weight 10 000. The identity of this component with that soluble in neutral chloroform/methanol mixture has been indicated. 4. The rate of incorporation of [3H]leucine by isolated Zajdela hepatoma mitochondria into the components with lower (10 000-25 000) apparent molecular weights decreased with time, whereas that into components with higher (above 25 000) apparent molecular weight remained approximately constant within the time interval tested (30 min). 5. From the total radioactivity incorporated into the membrane fraction during 5-min pulse labeling of isolated Zajdela hepatoma mitochondria by [3H]leucine up to 25% was recovered in the region of the gel corresponding to a component with apparent molecular weight 10 000. After 25 min chase the radioactivity in this region decreased about 3.5 times while the specific radioactivity of the total membrane fraction did not change significantly. The pattern of radioactivity distribution observed after the pulse was preserved by chloramphenicol. 6. Unlabeled sonicated mitochondria or postribosomal supernatant from rat liver regenerating in the presence of chloramphenicol were incubated with neutral chloroform/methanol extract of in vitro with [14C]leucine labeled rat liver mitochondria. After this incubation several labeled components with apparent molecular weights above 10 000 were recovered in the electrophoreograms of the originally unlabeled fractions.  相似文献   

9.
Recycling of membrane proteins during endo- and exocytosis in amoebae   总被引:1,自引:0,他引:1  
The fate of a membrane protein of the amoeba plasmalemma was studied by means of 125I iodination by lactoperoxidase, gel electrophoresis, radioautography and gamma counting. There was only one iodinatable polypeptide group with a molecular weight (MW) of 175 000 on the external surface of the plasmalemma. Two hours or more after induced phagocytosis, isolated phagolysosomal membranes contained two other smaller polypeptides with MWs of 70 000 and 35 000, respectively, suggesting that the 175 000 polypeptide was broken down to these smaller components during endocytosis. After 22 h of induced phagocytosis, isolated plasmalemma contained a 35 000 polypeptide group in addition to the 175 000 polypeptide species. The results suggested that some of the iodinatable membrane proteins were altered and recycled during endo- and exocytosis in amoebae, while others were recycled intact.  相似文献   

10.
Qualitative and quantitative changes in the protein and glycoprotein components of the plasma membrane of the cellular slime mould Dictyostelium discoideum have been detected by analysis of sodium dodecyl sulphate-polyacrylamide gel electrophoretic patterns. The amounts of proteins of subunit molecular weight 220 000, 91 000, 63 000, 59 000, 56 000 increased during the acquisition of aggregation competence, while proteins of subunit molecular weight 82 000 and 22 000 decreased. The amounts of glycoproteins with apparent subunit molecular weights 285 000, 150 000, 137 000, 100 000, 53 000, 50 500 and 30 500 increased during differentiation while a 125 000 dalton component decreased dramatically in amount. The neutral and amino sugar composition of the plasma membrane was also analyzed and found to remain essentially unchanged during the first 12 h of differentiation. The major sugars were mannose, fucose, and glucosamine; galactose and galactosamine were also present, but in lower amounts.  相似文献   

11.
The plasma membrane components of five human B-cell lines and three human T-cell lines were separated by dodecyl sulfate polyacrylamide gel electrophoresis, incubated with the radioactive labeled lectins from lentil, castor bean, wheat germ, Phaseolus bean, peanut, gorse and the Roman snail and the molecular weights of the binding sites determined. The lentil, castor bean and wheat germ lectin bound to multiple components from molecular weights (Mr) 20 000 to 200 000 within the plasma membranes, whereas peanut lectin bound preferentially to glycoproteins of Mr 150 000 and 83 000 in B-cells, and 150 000 and 130 000 in T-cells. The gorse lectin bound to a 220 000 component in B-cells which was not labeled in T-cells.  相似文献   

12.
Spermatozoa from the testis and cauda epididymidis were solubilized by detergent treatment and electrophoresis on SDS polyacrylamide gels revealed that the relative amounts of 13 detergent-extractable proteins decreased during passage of spermatozoa through the epididymis, 6 increased, whilst the remainder showed little or no change. Lactoperoxidase-catalysed iodination of plasma membrane proteins showed that the components carrying most of the label in testicular spermatozoa had Mr values of 110 000, 94 000, 84 000, 55 000 and 42 000 whereas on cauda epididymal spermatozoa the Mr values were 47 000, 24 000, 17 000, 14 500 and 13 500. Substantial differences were also noted in the protein composition of rete testis fluid and cauda epididymal plasma. The results support the concept that there is a considerable reorganization of the molecular architecture of the plasma membrane of spermatozoa during maturation in the epididymis.  相似文献   

13.
The membranes of the cell surface, the endoplasmic reticulum, outer and inner mitochondrial leaflet and nuclear envelope were isolated from three human lymphoblastoid cell lines. Membrane components were separated by dodecyl sulfate polyacrylamide gel electrophoresis and the gels incubated with the radioiodinated lectins from lentil, castor bean, scarlet runner bean, gorse seed and Roman snail. After gel slicing and counting, the molecular weights of the lectin binding sites were determined. About 20 glycoproteins were identified as constituents of the plasma membrane, a similar glycoprotein distribution was observed in the endoplasmic reticulum. The outer mitochondrial membrane contained some impurities from the plasma membrane, the inner mitochondrial membrane lacked specific lectin receptors. Two prominent glycoproteins with molecular weights of 70 000 and 60 000 were identified with the castor bean lectin in the nuclear envelope.  相似文献   

14.
Evidence is presented for the presence of multiple cyclic AMP binding components in the plasma membrane and cytosol fractions of porcine renal cortex and medulla. N6-(Ethyl-2-diazomalonyl)-3′,5′-adenosine monophosphate, a photoaffinity label for cyclic AMP binding sites, exhibits non-covalent binding characteristics similar to cyclic AMP in membrane and soluble fractions. Binding data for either compound to the plasma membrane fraction yields biphasic Scatchard plots while triphasic plots are obtained with the dialyzed cytosol. When covalently labeled fractions are separated on SDS-polyacrylamide gel electrophoresis, the cyclic AMP photoaffinity label is found on 49 000 and 130 000 dalton components in each kidney fraction. DEAE-cellulose and gel filtration chromatography of the labeled cortical cytosol fraction establishes that the three components suggested by the binding data correspond to two 49 000 dalton species and a 130 000 component. The 49 000 species have higher affinities for cyclic AMP than the 130 000 component (Ka(1) = 2.0 · 109, Ka(2) = 1.7 · 108, Ka(3) = 1.0 · 107). The 49 000 components are associated with protein kinase activity while the 130 000 component does not exhibit protein kinase, adenosine deaminase, or cyclic nucleotide phosphodiesterase activity. Immunologic results and effects of phosphorylation and cyclic GMP on cyclic AMP binding further suggest that the 49 000 components are regulatory subunits of cyclic AMP-dependent protein kinases. Cyclic AMP binding to the 130 000 component is markedly inhibited by adenosine and adenine nucleotides, but not cyclic GMP. Thus, this component may reflect an aspect of adenosine control or metabolism which may or may not be a cyclic AMP-related cellular function.  相似文献   

15.
Addition of Ca2+ to post-microsomal fractions of bovine adrenal or liver produced a sedimentable complex of membrane vesicles and cytoplasmic proteins. Proteins with apparent mol. wts. 70 000, 36 000 and 32 500 were solubilized from this complex by Ca2+ chelation. The 36 000 mol. wt. protein (p36) was immunoprecipitated by an antiserum specific for pp36, a major substrate for Rous sarcoma virus src-gene tyrosine kinase. This protein was present in many mesenchymal cells and associated with membrane cytoskeleton of bovine fibroblasts in a Ca2+-dependent manner. The 70 000 and 32 500 mol. wt. proteins were widely distributed in established cell lines, but were not clearly associated with cell organelles in tissue sections, nor retained in cytoskeleton preparations. On immunoblots p36 reacted strongly with antibodies produced against the electric fish protein Torpedo calelectrin and the similar Ca2+-binding properties and subunit mol. wts. of these proteins suggests that they might be functionally related. Since Torpedo calelectrin, p70, p36 and p32.5 were bound by lipid vesicles or microsomal membranes at micromolar free Ca2+ concentrations, regulated association with intrinsic membrane components may be involved in the functions of these widespread proteins.  相似文献   

16.
Transferrin-membrane protein complexes were solubilized either with 0.4% sodium dodecyl sulfate (SDS), 1% Triton X-100 or 0.5% sulfobetaine 3-14 from the plasma membranes of rabbit reticulocytes previously labeled with 125I and then incubated with 131-labeled transferrin. When the solubilized membranes were analyzed by gel filtration fractionation, marked variation in the preservation of transferrin-transferrin receptor interaction was noted between the three detergents. After SDS solubilization, more than 80% of the 131I-labeled transferrin remained associated with membrane proteins with apparent molecular weight of the transferrin-receptor complexes of 1400 000 and 240 000. In contrast, after Triton X-100 solubilization only 40% of the transferrin was still complexed to membrane proteins with an apparent molecular weight of the complex of 450 000. Dissociation of transferrin from its receptor was most marked following sulfobetaine solubilization, with less than 30% of the transferrin still complexed. Following gel filtration 131I-labeled transferrin-125I-labeled membrane protein complexes were immunoprecipitated with goat specific anti-rabbit transferrin antibodies. The immunoprecipitates were analyzed under stringent dissociating conditions by two SDS-polyacrylamide gel electrophoretic techniques. In a linear 5-25% polyacrylamide gradient the 125I-labeled receptor obtained after membrane solubilization with all three detergents had an apparent molecular weight of 80 000. In contrast, in a different system using 10% polyacrylamide gel two 125I-labeled receptor components were detected wih apparent molecular weights of 90 000 and 80 000. These results demonstrate that estimates of the molecular weight of the transferrin receptor depended on the conditions of electrophoresis and suggest that the transferrin receptor is partially modified, perhaps by glycosylation.  相似文献   

17.
Seven different sulphated macromolecules were detected in 6 M-guanidinium chloride extracts of metabolically [35S]sulphate-labelled mouse Reichert's membrane and were partially separated. Polypeptide bands of apparent Mr 50 000, 150 000 (tentatively identified as entactin) and 170 000 contained essentially tyrosine O-sulphate as the labelled component. Most of the radioactive sulphate was incorporated into three different proteoglycans, which could be separated by chromatography and density-gradient centrifugation before and after enzymic degradation. Enzymic analysis of glycosaminoglycans and of protein cores by immunoassays identified these components as low-density and high-density forms of heparan sulphate proteoglycan and a high-density form of chondroitin sulphate or dermatan sulphate proteoglycan.  相似文献   

18.
Glycoproteins in the external surface of intact synaptosomes from rat brain cortex have been studied by oxidation of exposed galactose and galactosamine groups by galactose oxidase followed by reduction with labeled sodium borohydride. Purified synaptosomes were labeled, disrupted by osmotic shock, and the particulate components were fractionated on diatrizoate to give four synaptosomal membrane fractions (A to D) and a mitochondrial pellet (E). Fractions A and B represent highly purified synaptosomal plasma membranes. After separation of their polypeptides by electrophoresis, 45 of the label was present in two bands: one about 72 000 and the other between 7800 and 3200 daltons. Seven other bands were labeled to various degrees: 160 000, 96 000, 53 000, 39 000, 34 000, 23 000 and 16 000 daltons. With isolated membranes (which incorporate 5–6 times more label) 45 of label was present in polypeptides in three ranges: 160 000–96 000, 70 000–40 000 and 7800-3200. The number of polypeptides that can be labeled by treatment of isolated membranes is very large. In comparison, glycoproteins whose topographical distribution permits interaction with large molecules at the synaptic surface are very limited. It is further suggested that the external synaptosome membrane involves a relatively tight network of interacting molecules that cannot be readily penetrated by large molecules.  相似文献   

19.
Marked differences were found in the electrophoretic profiles and amino-acid compositions of components prepared from rat glomerular basement membrane (GBM) by a number of different solubilization procedures. Treatment with reducing agent resulted in a simplified electrophoretic pattern which was characterized by the presence of a major collagenous component with a mol.wt, of 150 000. In contrast, detergent solubilized mainly lower-mol.-wt, material which had a more polar amino-acid composition. When both reagents were used together the majority of the basement-membrane material was soJubilized within 2 h and components with mol.wts, of 170 000 and 135 000 were predominant i n the pro- region of the gel. Treatment for a further 16 h was required to solubilize higher-mol.-wt, material and to achieve maximum solubility of components in the pro- region with mol.wts, of 185 000 and 150 000. These methods provide a means of separating subcomponents of rat GBM while avoiding the problems of degradation inherent in enzymatic procedures.  相似文献   

20.
The cell surface protein components of Sarcoma 180 ascites tumor cells have been investigated by a combination of plasma membrane isolation techniques and lactoperoxidase iodination. For plasma membrane isolation cells were homogenized in the presence or absence of Zn2+ and fractionated by sucrose density gradient centrifugation or a two-phase partition to give large membrane fragments or membrane envelopes. Membrane purification was monitored by phase contrast microscopy and chemical and enzyme marker assays. The membrane preparations were analyzed by acrylamide gel electrophoresis in sodium dodecylsulfate. Each preparation showed a common protein pattern of about 15 bands ranging in molecular weights from 33 000 to >300000. Two carbohydrate-containing bands were also present in all preparations. Membranes prepared with Zn2+ were much less fragmented and showed much greater amounts of three high molecular weight components than those prepared in the absence of Zn2+. This might suggest a role for these components in membrane stabilization.The tumor cells were also subjected to iodination with lactoperoxidase, followed by membrane isolation and acrylamide gel electrophoresis in sodium dodecylsulfate in order to identify polypeptides accessible to the cell surface. The major radioactive band coincided with the major carbohydrate-containing band, presumably a surface glycoprotein. A second carbohydrate-containing band showed variable labeling behavior between different cell preparations. This material had a high molecular weight, as indicated by both acrylamide gel electrophoresis and gel permeation chromatography in dodecylsulfate. Several other components are labeled to a lesser extent in the intact cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号