首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In East Africa, significant morbidity and mortality are caused by infections spread by Culex quinquefasciatus and Aedes aegypti. Sticky traps have been shown to be effective tools for sampling populations of Aedes mosquitoes and have been found to catch Cx. quinquefasciatus. Thus, they could potentially be used to sample populations of this species. This study compared Sticky ovitraps (SO) and MosquiTraps (MQT) with the CDC Gravid trap (CDC‐GT) for collection of Culex and Aedes mosquito populations in Tanzania. A follow‐up experiment was carried out using traps set for a 24‐h period to accommodate the oviposition habits of Aedes aegypti and Ae. simpsoni s.l. mosquitoes. The results showed that the CDC‐GT caught significantly more Cx. quinquefasciatus and Ae. aegypti than the SO or MQT, but there was no significant difference in the number of mosquitoes caught between the two sticky traps or of Ae. simpsoni s.l. caught among the three trap types. The results suggest that CDC‐GTs are the most appropriate in sampling of Cx. quinquefasciatus. Although CDC‐GTs collected more Ae. aegypti than the sticky traps, the simplicity and cost benefit of sticky traps facilitates large scale studies. All three trap types should be considered for monitoring Aedes mosquitoes.  相似文献   

2.
Competitive displacements or reductions of resident populations of insects, often effected by a related species, may be caused by a variety of mechanisms. Satyrization is a form of mating interference in which males of one species mate with females of another species, significantly decreasing their fitness and not generating hybrids. Satyrization has been established to be the probable cause of competitive displacements of resident mosquitoes by invasive species, especially of Aedes aegypti by Aedes albopictus, two important vectors of dengue and chikungunya viruses. Mathematical models predict that even low levels of asymmetric mating interference are capable of producing competitive displacements or reductions. Couplings of virgin Ae. aegypti females with Ae. albopictus males effectively sterilize these females through the monogamizing actions of male accessory gland products, but the converse interspecific mating does not impact the future reproduction of Ae. albopictus females. Populations of Ae. aegypti exposed to satyrization quickly evolve resistance to interspecific mating, which is believed to ameliorate reproductive interference from, and promote co‐existence with, Ae. albopictus. The evolution of satyrization resistance among Ae. aegypti in laboratory cages is accompanied by fitness costs, such as reduced fecundity and slower receptivity to conspecific males. Cage experiments and field observations indicate that Ae. albopictus males are capable of satyrizing females of other species of the Stegomyia subgenus, potentially leading to competitive displacements, and possible extinctions, especially of endemic species on islands. Examination of other examples of reproductive interference in insects reveals few parallels to the mechanism and outcomes of satyrization by Ae. albopictus. We conclude by posing the hypothesis that satyrization may favor the ecological success of Ae. albopictus, and suggest many lines for future research on this phenomenon.  相似文献   

3.
During the dry season in February, 2010 and the wet season in September, 2011 we sampled mosquito larvae and eggs from treeholes of seven native hardwood species and the husks of Saba senegalensis in 18 sites in the PK‐10 forest in southeastern Senegal. Larvae were reared to adults for species identification. In the dry season, we recovered 408 Aedes mosquitoes belonging to seven species. Aedes aegypti s.l. comprised 42.4% of the collection, followed by Ae. unilineatus (39%). In contrast to reports from East Africa, both Ae. aegypti aegypti and Ae. aegypti formosus were recovered, suggesting that both subspecies survive the dry season in natural larval habitats in West Africa. In the wet season, 455 mosquitoes were collected but 310 (68.1%) were the facultatively predaceous mosquito Eretmapodites chrysogaster. The remaining 145 mosquitoes consisted of ten Aedes species. Aedes aegypti s.l. comprised 55.1% of these, followed by Ae. apicoargenteus (15.2%) and Ae. cozi (11.7%). Similar to East Africa, most (90%) of Ae. aegypti s.l. in the wet season were subspecies formosus.  相似文献   

4.
Several studies have examined how climatic variables such as temperature and precipitation may affect life history traits in mosquitoes that are important to disease transmission. Despite its importance as a seasonal cue in nature, studies investigating the influence of photoperiod on such traits are relatively few. This study aims to investigate how photoperiod alters life history traits, survival, and blood‐feeding activity in Aedes albopictus (Skuse) and Aedes aegypti (Linnaeus). We performed three experiments that tested the effects of day length on female survival, development time, adult size, fecundity, adult life span, and propensity to blood feed in Ae. albopictus and Ae. aegypti. Each experiment had three photoperiod treatments: 1) short‐day (10L:14D), 2) control (12L:12D), and 3) long‐day (14L:10D). Aedes albopictus adult females were consistently larger in size when reared in short‐day conditions. Aedes aegypti adult females from short‐day treatments lived longer and were more likely to take a blood meal compared to other treatments. We discuss how species‐specific responses may reflect alternative strategies evolved to increase survival during unfavorable conditions. We review the potential impacts of these responses on seasonal transmission patterns, such as potentially increasing vectorial capacity of Ae. aegypti during periods of shorter day lengths.  相似文献   

5.
Aedes aegypti L. (Stegomyia aegypti) (Diptera: Culicidae) is the principal vector of dengue and yellow fever viruses in tropical and subtropical regions of the world. Disease management is largely based on mosquito control achieved by insecticides applied to interior resting surfaces and through space sprays. Population monitoring to detect insecticide resistance is a significant component of integrated disease management programmes. We developed a bioassay method for assessing insecticide susceptibility based on the feeding activity of mosquitoes on plant sugars. Our prototype sugar‐insecticide feeding bioassay system was composed of inexpensive, disposable components, contained minimal volumes of insecticide, and was compact and highly transportable. Individual mosquitoes were assayed in a plastic cup that contained a sucrose‐permethrin solution. Trypan blue dye was added to create a visual marker in the mosquito's abdomen for ingested sucrose‐permethrin solution. Blue faecal spots provided further evidence of solution ingestion. With the sugar‐insecticide feeding bioassay, the permethrin susceptibility of Ae. aegypti females from two field‐collected strains was characterized by probit analysis of dosage‐response data. The field strains were also tested by forced contact of females with permethrin residues on filter paper. Dosage‐response patterns were similar, indicating that the sugar‐insecticide feeding bioassay had appropriately characterized the permethrin susceptibility of the two strains.  相似文献   

6.
A novel multiple membrane blood‐feeding system for mosquitoes has been developed for the study and routine maintenance of Aedes aegypti L. and Aedes albopictus Skuse that require a meal of vertebrate blood to produce eggs. This blood‐feeding system uses cattle collagen sausage‐casing membrane to facilitate feeding. The efficiency of this blood‐feeding system was compared to a live mice blood source. We observed that Ae. aegypti that fed on pig whole blood had 89.7% (w/o ATP) and 90.7% (w/ ATP) blood‐feeding rates, which were not significantly different from the mice‐fed ones (98.0%). Ae. albopictus fed on pig whole blood (w/ ATP) had a success rate of 84.4%, which was significantly different from the mice‐fed mosquitoes (51.1%). The feeding rates did not differ between sausage‐casing membrane and Parafilm‐M®. The survival rate, fecundity, pupation, and pupal emergence rates of Aedes females fed on pig whole blood were not significantly different from the mice‐fed ones. The artificial blood feeder can be applied to replace live animals as blood sources. Considering that this simple, inexpensive, convenient, and efficient feeding device can be built with common laboratory materials for research on Aedes mosquitoes.  相似文献   

7.
Aedes aegypti and Culex pipiens s.l. (Linnaeus, 1762 and 1758, respectively) (Diptera: Culicidae) are important vectors of diseases to humans and a growing public health concern. In order to contribute to the control of mosquito vectors by low environmental impact approaches we assessed the susceptibility of natural populations of container-breeding mosquitoes to triflumuron, an insect growth regulator, in temperate Argentina. A field trial was conducted to evaluate the efficacy of two doses (0.5 ppm and 1 ppm) of triflumuron (SC 48%) against natural populations of Ae. aegypti and Culex spp. immatures in flower vases of four cemeteries. The results demonstrated the susceptibility of both target mosquitoes to triflumuron in field conditions. For Ae. aegypti, dose-dependent reductions were achieved in the presence of pupae and the percentage of water-holding containers harbouring L3–4 and/or pupae, whereas the larvae abundance was equally reduced for both doses. For Culex spp., similar levels of reduction of larvae abundance and pupae presence were achieved with both doses. Significant effects on the response variables measured were recorded up to six to eight weeks post-intervention. Bimonthly applying 1 ppm triflumuron in the context of an integrated mosquito management should achieve a lasting control of Ae. aegypti and Culex spp. in small artificial containers with minimal environmental impacts.  相似文献   

8.

Background  

The RNA interference (RNAi) pathway acts as an innate antiviral immune response in Aedes aegypti, modulating arbovirus infection of mosquitoes. Sindbis virus (SINV; family: Togaviridae, genus: Alphavirus) is an arbovirus that infects Ae. aegypti in the laboratory. SINV strain TR339 encounters a midgut escape barrier (MEB) during infection of Ae. aegypti. The nature of this barrier is not well understood. To investigate the role of the midgut as the central organ determining vector competence for arboviruses, we generated transgenic mosquitoes in which the RNAi pathway was impaired in midgut tissue of bloodfed females. We used these mosquitoes to reveal effects of RNAi impairment in the midgut on SINV replication, midgut infection and dissemination efficiencies, and mosquito longevity.  相似文献   

9.
We investigated the oviposition behavior of Ae. aegypti and Ae. albopictus. In particular we examined whether small‐scale site characteristics and the presence of conspecifics or congeners altered oviposition by these mosquitoes. Various combinations of females of the two species were allowed to oviposit inside cages among either vegetation (potted plants) or structural components (wood and concrete blocks). Numbers of eggs deposited per female were compared between species, sides, and treatments. Most significant differences between treatments and species involved differences between single species and mixed species treatments. Ae. aegypti deposited more eggs/female in the vegetation side than in the structure side whereas the opposite pattern was evident for Ae. albopictus. Ae. aegypti females had higher frequency of skip oviposition than Ae. albopictus. An average of 63% of the containers in the two‐species treatments contained eggs of both species, with more frequent joint occurrences observed in the treatment with three females of each species than in the treatments with one of each. Our results point to the existence of various interactions between gravid Ae. aegypti and Ae. albopictus females at or near the oviposition sites but further experimental work is necessary to fully characterize the interactions and their specific mechanisms.  相似文献   

10.
Aedes albopictus (Diptera: Culicidae) was first reported in Central Africa in 2000, together with the indigenous mosquito species Aedes aegypti (Diptera: Culicidae). Because Ae. albopictus can also transmit arboviruses, its introduction is a public health concern. We undertook a comparative study in three Cameroonian towns (Sahelian domain: Garoua; equatorial domain: Douala and Yaoundé) in order to document infestation by the two species and their ecological preferences. High and variable levels of pre‐imaginal Ae. aegypti and Ae. albopictus infestation were detected. Only Ae. aegypti was encountered in Garoua, whereas both species were found in Douala and Yaoundé, albeit with significant differences in their relative prevalence. Peridomestic water containers were the most strongly colonized and productive larval habitats for both species. No major differences in types of larval habitat were found, but Ae. albopictus preferentially bred in containers containing plant debris or surrounded by vegetation, whereas Ae. aegypti tended to breed in containers located in environments with a high density of buildings. These findings may have important implications for vector control strategies.  相似文献   

11.
Mosquitoes transmit many diseases to humans and animals e.g., malaria, yellow fever, dengue, filariasis and encephalitis. The fundamental target of this search was to study the effect of three different blood meal sources (human; rabbit and pigeon) on some biological and behavioral properties of Aedes aegypti and Culex pipiens. The results have assured that the females of the mosquito Ae. aegypti that were fed on human blood meal has registered the highest feeding activity from feeding on the blood meal whereas the females of the other mosquito Cx. pipiens have shown the highest feeding activity after being fed on pigeons when compared with its feeding on other factors. The results have shown non-significant variation in the average time necessary to digest the blood meal on both mosquito species Ae. aegypti and Cx. pipiens that were fed on vertebrate hosts under laboratory conditions. Furthermore, results assured that the difference in blood meal sources has yielded distinct variation in the reproductive capacity and efficiency of both female mosquitoes under investigation where both species Ae. aegypti and Cx. pipiens already fed on human blood meal have yielded a pronounced distinctive increase in egg production (oviposition) when compared with females that were fed on pigeon or rabbit blood meal respectively. Moreover, feeding of the female mosquitoes under lab conditions on different blood meal sources did not affect the level of the hatching eggs that were laid by both mosquito females.  相似文献   

12.
The effects of dietary sugar and body size on the oviposition of Ae. aegypti were studied under laboratory conditions. In female mosquitoes provided with sugar, the start of maximum fecundity was significantly delayed and the oviposition period was longer than in females provided with water. The peak of oviposition was also delayed in sugar‐fed females. Large females oviposited more eggs per day than small females at maximum fecundity and during eight days of observations. Large females also visited significantly more water‐containing cups in their cages per day than small females at maximum fecundity. During the eight days of observations, large females and sugar‐fed females visited more water‐containing cups in their cages than water‐fed small females. Both large females and sugar‐fed females oviposited their eggs at sites higher above the water line than water‐fed small females. These results suggested that large and sugar‐fed female Ae. aegypti mosquitoes had more energy reserves and oviposited their eggs at higher sites, which would lead to a time lag in hatching.  相似文献   

13.
Invasion by mosquito vectors of disease may impact the distribution of resident mosquitoes, resulting in novel patterns of vectors and concomitant risk for disease. One example of such an impact is the invasion by Aedes albopictus (Skuse) [Stegomyia albopictus (Skuse)] (Diptera: Culicidae) of North America and this species' interaction with Aedes aegypti L. (Stegomyia aegypti L). We hypothesized that Ae. aegypti would be found in urban, coastal areas that experience hotter and drier conditions, whereas Ae. albopictus would be more commonly found in suburban and rural areas that are cooler and wetter. In addition, we hypothesized that Ae. aegypti would be more abundant early in the wet season, whereas Ae. albopictus would be more abundant later in the wet season. Urban areas were drier, hotter and contained more Ae. aegypti than suburban or rural areas. Aedes aegypti was relatively more abundant early in the wet season, whereas Ae. albopictus was more abundant in both the late wet season and the dry season. The spatial patterns of inter‐ and intraspecific encounters between these species were also described. The distribution of these mosquitoes is correlated with abiotic conditions, and with temperature, humidity and the relative availability of rain‐filled containers. Understanding the ecological determinants of species distribution can provide insight into the biology of these vectors and important information for their appropriate control.  相似文献   

14.
15.

Background

The domestic dengue vector Aedes aegypti mosquitoes breed in indoor containers. However, in northern peninsular Malaysia, they show equal preference for breeding in both indoor and outdoor habitats. To evaluate the epidemiological implications of this peridomestic adaptation, we examined whether Ae. aegypti exhibits decreased survival, gonotrophic activity, and fecundity due to lack of host availability and the changing breeding behavior.

Methodology/Principal Findings

This yearlong field surveillance identified Ae. aegypti breeding in outdoor containers on an enormous scale. Through a sequence of experiments incorporating outdoors and indoors adapting as well as adapted populations, we observed that indoors provided better environment for the survival of Ae. aegypti and the observed death patterns could be explained on the basis of a difference in body size. The duration of gonotrophic period was much shorter in large-bodied females. Fecundity tended to be greater in indoor acclimated females. We also found increased tendency to multiple feeding in outdoors adapted females, which were smaller in size compared to their outdoors breeding counterparts.

Conclusion/Significance

The data presented here suggest that acclimatization of Ae. aegypti to the outdoor environment may not decrease its lifespan or gonotrophic activity but rather increase breeding opportunities (increased number of discarded containers outdoors), the rate of larval development, but small body sizes at emergence. Size is likely to be correlated with disease transmission. In general, small size in Aedes females will favor increased blood-feeding frequency resulting in higher population sizes and disease occurrence.  相似文献   

16.
The colonization of Aedes aegypti and Anopheles dirus was performed using out‐of‐date human blood from a blood bank as a nutritional supply dispensed from a common artificial feeder. Preserved human blood was collected and used for feeding on days 5, 15, and 25 after date of expiration and dispensed from a common artificial feeder to rear the mosquitoes. Ae. aegypti had a feeding rate of 78.7, 62, and 18% at the respective intervals while An. dirus had a rate of 80, 56.8, and 7.3% on the same respective days. Direct feeding on live hamsters resulted in a rate of 96 and 90% for Ae. aegypti and An. dirus, respectively. Although egg production rates decreased from the day 5 feeding to the day 25 feeding, all of the developmental stages resulting from An. dirus fed at day 5 and 15 showed insignificant differences when compared with direct feeding on the blood of a hamster.  相似文献   

17.
Earth observation environmental features measured through remote sensing and models of vector mosquitoes species Aedes aegypti and Ae. albopictus provide an advancement with regards to dengue risk in urban environments of subtropical areas of Argentina. The authors aim to estimate the effect of landscape coverage and spectral indices (Normalized Difference Vegetation Index [NDVI], Normalized Difference Water Index [NDWI] and Normalized Difference Built-up Index [NDBI]) on the larvae abundance of Ae. aegypti and Ae. albopictus in Eldorado, Misiones, Argentina using remote satellite sensors. Larvae of these species were collected monthly (June 2016 to April 2018), in four environments: tire repair shops, cemeteries, dwellings and an urban natural park. The proportion of landscape coverage (water, urban areas, bare soil, low vegetation and high vegetation) was determined from the supervised classification of Sentinel-2 images and spectral indices, calculated. The authors developed spatial models of both vector species by generalized linear mixed models. The model's results showed that Ae. aegypti larvae abundance was better modelled by NDVI minimum values, NDBI maximum values and the interaction between them. For Ae. albopictus proportion of bare soil, low vegetation and the interaction between both variables explained better the abundance.  相似文献   

18.
Current methods of broad area application of contact insecticides used in mosquito control are becoming less effective, primarily due to resistance within mosquito populations. New methods that can deliver ingestible insecticides are being investigated as a means to mitigate resistance. This study evaluated insecticide delivery through toxic sugar baits (TSB) and resulting mortality of susceptible and resistant strains of Aedes aegypti. Two Ae. aegypti strains were evaluated using a 1% boric acid TSB: the susceptible Orlando 1952 (ORL) strain and the resistant Puerto Rican (PR) strain. The TSB resulted in high mortality for both ORL and PR strain of Ae. aegypti. Average mortality of female mosquitoes given TSB was 90.8% for PR and 99.3% for ORL. Our study suggests that targeting resistant mosquitoes with ingestible insecticides through TSBs could be a viable alternative to current mosquito control strategies and should be considered when developing an integrated vector management program.  相似文献   

19.
Mosquitoes of various species mate in swarms comprised of tens of thousands of flying males. In this study, we examined Aedes aegypti swarming behavior and identified associated chemical cues. Novel evidence is provided that Ae. aegypti females aggregate by means of olfactory cues, such as aggregation pheromones. Isolation of Ae. aegypti aggregation pheromones was achieved by aeration of confined mosquitoes and collection of associated volatiles by glass filters. The collected volatiles were identified through gas chromatography mass spectrometry (GCMS). Three aggregation pheromones were collected and identified as 2,6,6‐trimethylcyclohex‐2‐ene‐1,4‐dione (ketoisophorone) (CAS# 1125–21–9, tR = 18.75), 2,2,6‐trimethylcyclohexane‐1,4‐dione (the saturated analog of ketoisophorone) (CAS# 20547–99–3, tR = 20.05), and 1‐(4‐ethylphenyl) ethanone (CAS# 937–30–4, tR = 24.22). Our biological studies revealed that the identified compounds stimulated mosquito behavior under laboratory conditions. The mechanism of mosquito swarm formation is discussed in light of our behavioral study findings. A preliminary field trial demonstrated the potential application of the isolated aggregation pheromones in controlling Ae. aegypti.  相似文献   

20.
The mosquitoes Aedes aegypti (L.) and Ae. albopictus Skuse are the major vectors of dengue, Zika, yellow fever, and chikungunya viruses worldwide. Wolbachia, an endosymbiotic bacterium present in many insects, is being utilized in novel vector control strategies to manipulate mosquito life history and vector competence to curb virus transmission. Earlier studies have found that Wolbachia is commonly detected in Ae. albopictus but rarely detected in Ae. aegypti. In this study, we used a two‐step PCR assay to detect Wolbachia in wild‐collected samples of Ae. aegypti. The PCR products were sequenced to validate amplicons and identify Wolbachia strains. A loop‐mediated isothermal amplification (LAMP) assay was developed and used for detecting Wolbachia in selected mosquito specimens as well. We found Wolbachia in 85/148 (57.4%) wild Ae. aegypti specimens from various cities in New Mexico, and in 2/46 (4.3%) from St. Augustine, Florida. Wolbachia was not detected in 94 samples of Ae. aegypti from Deer Park, Harris County, Texas. Wolbachia detected in Ae. aegypti from both New Mexico and Florida was the wAlbB strain of Wolbachia pipientis. A Wolbachia‐positive colony of Ae. aegypti was established from pupae collected in Las Cruces, New Mexico, in 2018. The infected females of this strain transmitted Wolbachia to their progeny when crossed with males of Rockefeller strain of Ae. aegypti, which does not carry Wolbachia. In contrast, none of the progeny of Las Cruces males mated to Rockefeller females were infected with Wolbachia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号