首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Two toxins from the venom of Naja mossambica mossambica, neurotoxin I and cardiotoxin VII4, were investigated in aqueous solution by high-resolution 1H nuclear magnetic resonance (NMR) techniques at 360 MHz. The spectral characterization of the proteins included determination of the number of slowly exchanging amide protons which can be observed in 2H2O solution, measurement of the amide proton chemical shifts and exchange rates, characterization of the aromatic spin systems and the internal mobilities of aromatic rings, and studies of the pH dependence of the NMR spectra. For numerous resonances of labile and non-labile protons quite outstanding pH titration shifts were observed. It is suggested that these NMR parameters provide a useful basis for comparative structural studies of different proteins in the large group of homologous snake toxins. As a first application the NMR data presently available in the literature on neurotoxin II from Naja naja oxiana, toxin alpha from Naja nigricollis and erabutoxin a and b from Laticauda semifasciata have been used to compare these three proteins with neurotoxin I from Naja mossambica mossambica. This preliminary comparative study provides evidence that the same type of spatial structure prevails for these four homologous neurotoxins and that the folding of the backbone corresponds quite closely to that observed in the crystal structure of erabutoxin b. A second application is the comparison of cardiotoxin VII4 from Naja mossambica mossambica with the neurotoxins. The experimental data indicate that the folding of the polypeptide backbone is closely similar, but that the cardiotoxin molecule is markedly more flexible than the neurotoxins.  相似文献   

2.
Hemolysis of guinea pig erythrocytes by snake venom cardiotoxins was investigated with a semi-automatic method based on light-scattering changes of erythrocyte suspensions at 700 nm which are directly related to hemoglobin release. Small amounts of phospholipase-free cardiotoxin (<100 μg) could be conveniently and rapidly assayed with the high reproducibility in a recording spectrophotometer, and reliable kinetic data were accumulated.Cardiotoxins from two different genera (Hemachatus haemachates and Naja mossambica mossambica) displayed virtually identical hemolytic properties. Hemolysis increased linearly with time, in contrast with a sigmoidal pattern when phospholipase was present as an impurity. Low concentrations of Ca2+ (<1 mM) stimulated cardiotoxin action. A limiting plateau rate of hemolysis reached during concentration dependence experiments in which the level of either cardiotoxin or of erythrocytes was varied, suggested that the interaction of cardiotoxin with erythrocyte membranes is a saturation phenomenon only at a high ratio of cardiotoxin: erythrocytes. No hemolysis was observed with an homologous neurotoxin of S-methylated cardiotoxin, providing evidence for specificity. The linear Arrhenius plots obtained for the temperature dependence of cardiotoxin-induced hemolysis strengthened the conclusion that its action involves more than a detergent-like effect on membrane phospholipids.  相似文献   

3.
Proton n.m.r. spectra at 360 MHz of neurotoxin II and cardiotoxin VII4 from the venom of Naja mossambica mossambica are reported. From the n.m.r. spectra the solution conformations of the two proteins seem to be quite closely related. However, the exchange rates of the n.m.r. observable labile protons with deuterium of the solvent were markedly different, showing that the molecular structure of the cardiotoxin must be more flexible than that of the neurotoxin and suggesting that the different functional properties of the two toxins might be related to the different molecular dynamics.  相似文献   

4.
R M Kini  H J Evans 《Biochemistry》1989,28(23):9209-9215
Cardiotoxins and postsynaptic neurotoxins from snake venoms have similar primary, secondary, and tertiary structures. Cardiotoxins, however, in contrast to neurotoxins, exhibit general cytotoxicity. Comparison of the distribution of hydrophobic and charged amino acid residues in the three-dimensional structures of lytic cardiotoxins and nonlytic neurotoxins indicates the presence of a cationic site associated with a hydrophobic surface in cardiotoxins, but not in neurotoxins. A cationic site flanked by a hydrophobic site is a common structural feature shared by a wide variety of unrelated cytolysins and is predicted to determine the lytic activity of a large group of cytolysins. To determine the essential nature of the cationic site in cardiotoxin CTX-1 from Naja nigricollis crawshawii venom, we modified the positive charges of nine Lys residues to negative, neutral, or positive charges by succinylation, carbamylation, or guanidination, respectively. Circular dichroism studies indicated that these modifications did not affect the conformation of the cardiotoxin. Binding of the modified cardiotoxins to phospholipids was demonstrated by changes in the intrinsic fluorescence of native and modified CTX-1 after binding to phospholipid vesicles, and by resonance energy transfer with anthracene-phospholipid vesicles. Phospholipid binding was not affected by these modifications, but their binding preference was determined by the electrostatic interactions between the polypeptide and phospholipid. Both positively charged native and guanidinated CTX-1 showed direct lytic activity on human erythrocytes and platelets, whereas the succinylated or carbamylated derivatives did not show lytic activity. The loss of lytic activity cannot be related to conformational changes or phospholipid binding abilities of the modified cardiotoxins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Freeze-fracture electron microscopy was used to follow morphological changes induced by Naja mossambica mossambica venom V4II cardiotoxin in rod outer segment membrane preparations. The extent of the morphological changes depended on the purity of the cardiotoxin. Pure cardiotoxin had no detectable effect upon the preparation, but, when contaminated with venom phospholipase A2, let to a rapid disintegration of the membrane vesicles. With trace amounts (up to about 0.5% of the cardiotoxin) of phospholipase A2, the membrane vesicles disintegrated into smooth lamellae and particles in solution. These two components were separated by centrifugation. The pellet, which showed the presence of smooth lamellae and aggregated particles, was composed of unbleached rhodopsin, initial membrane lipids, lysolipids and cardiotoxin. The supernatant, which showed only the presence of dispersed particles, was composed of unbleached rhodopsin, lysolipids and cardiotoxin. With cardiotoxin containing larger amounts of phospholipase A2 (more than 0.5% of the cardiotoxin), membrane vesicles were disintegrated into large aggregates of amorphous material, composed of bleached rhodopsin, initial membrane lipids, lysolipids and cardiotoxin. These results confirm our previous observation on the release of integral membrane proteins from membrane vesicles by the action of cardiotoxin containing traces of phospholipase A2 (Gulik-Krzywicki, T., Balerna, M., Vincent, J.P. and Lazdunski, M. (1981) Biochim. Biophys. Acta 643, 101–114) and suggest its possible use for isolation and purification of integral membrane proteins.  相似文献   

6.
The interaction of cardiotoxin II of Naja mossambica mossambica with cardiolipin model membranes was investigated by binding, fluorescence, resonance energy transfer, fluorescence quenching, 31P NMR, freeze-fracture, and small-angle X-ray experiments. An initially electrostatic binding appeared to be accompanied by a deep penetration, most likely into the acyl chain region of the phospholipids, indicating a hydrophobic contribution to the strong interaction (KD congruent to 5 X 10(-8) M). This binding results in a fusion of unilamellar vesicles as indicated by a fluorescence-based fusion assay, freeze-fracture, and X-ray diffraction. In these fused structures freeze-fracture electron microscopy reveals the appearance of particles, which is accompanied by the induction of an isotropic component in 31P NMR. The well-defined particles are interpreted as inverted micelles, and the localization of the cardiotoxin molecule in these structures is discussed.  相似文献   

7.
Cardiotoxin isolated from Naja mossambica mossambica selectively deactivates the sodium-potassium activated adenosine triphosphatase of axonal membranes. Tetrodotoxin binding and acetylcholinesterase activities are unaffected by cardiotoxin treatment. The details of association of cardiotoxin with the axonal membrane were studied by following the deactivation of the sodium-potassium activated adenosine triphosphatase and by direct binding measurements with a tritiated derivative of the native cardiotoxin. The maximal binding capacity of the membrane is 42-50 nmol of cardiotoxin/mg of membrane protein. The high amount of binding suggests association of the toxin with the lipid phase of the membrane. It has been shown that cardiotoxin first associates rapidly and reversibly to membrane lipids, then, in a second step, it induces a rearrangement of the membrane structure which produces and irreversible deactivation of the sodium-potassium activated adenosine triphosphatase. Solubilization of the membrane-bound ATPase with Lubrol WX gives an active enzyme species that is resistant to cardiotoxin-induced deactivation. Cardiotoxin binding to the membrane is prevented by high concentrations of Ca 2+ and dibucaine. Although cardiotoxins and neurotoxins of cobra venom have large sequence homologies, their mode of action on membranes is very different. The cardiotoxin seems to bind to the lipid phase of the axonal membrane and inhibits the sodium-potassium activated adenosine triphosphatase, whereas the neurotoxin associates with a protein receptor in the post-synaptic membrane and blocks acetylcholine transmission.  相似文献   

8.
The strong paralytic and lethal action of the venom of the cobra Naja mossambica mossambica on locusts is mainly due to its cardiotoxic components. When cardiotoxin was applied to the locust extensor tibiae nerve-muscle preparation, it caused a gradual and irreversible decrease in the membrane resting potential of the muscle fibers. The time course of this potential drop was dose dependent. The electrical responses of the muscle fiber, caused by stimulation of the motor nerve, progressively decreased due to the depolarization of the membrane. The membrane-depolarizing action of cardiotoxin could be prevented by high calcium (10 mm) and by lanthanum (1 mm) in the bathing solution. In nerve-muscle preparations obtained from cardiotoxin-paralyzed locusts, normal resting and action potentials were recorded for at least 2 hr after cardiotoxin was injected into the animals.  相似文献   

9.
Sequence characterization of venom toxins from Thailand cobra   总被引:1,自引:0,他引:1  
Several toxins with distinct pharmacological properties were isolated from the venom of Thailand cobra (Naja naja siamensis) by cation-exchange chromatography. Two neurotoxins and one basic toxin with cardiotoxic activity were further purified and sequenced. The neurotoxins characterized were closely similar to the previously reported long- and short-chain neutrotoxins. The complete sequences of one minor neurotoxin and one cardiotoxin analogue were determined with the automatic protein sequencer in non-stop single runs of Edman degradation coupled with C-terminal sequence determination with carboxypeptidase digestion. The minor neurotoxin consists of 62 amino-acid residues with 8 cysteine residues and is found to be almost identical to cobrotoxin, a major toxic component of Formosa cobra (Naja naja atra). The sequence comparison of the 60-residue cardiotoxin with other reported cytotoxins of snake venoms indicates that 8 cysteine residues at the positions 3, 14, 21, 38, 42, 53, 54, and 59 are invariant among all sequences, with only two conservative changes at other positions along the sequence. The upshot of this report exemplified the facile sequence analysis of venom toxins by the application of pulsed-liquid phase protein sequencer and also revealed new analogues of a minor neurotoxin and one major cardiotoxin reported previously on the same species of Thailand cobra.  相似文献   

10.
It has been found that the lethal action of elapid snake venoms to arthropods (fly larvae and isopods) is due to proteic factors differing from the toxins which are strongly and specifically active on mammals.This conclusion was based on the following: (1) Lack of any correlation between the toxic activity on larvae, isopods, and mice of ten elapid snake venoms. (2) Absence of any toxicity to arthropods in pure toxins isolated and purified from several elapid snake venoms according to their lethality. (3) Electrophoretical separation of the venom of the snake Naja mossambica mossambica (= N. nigricollis mossambica) resulted in fractions active either to arthropods and/or to mice. (4) Separation of the above venom by gel filtration on Sephadex G-50 enabled the isolation of fractions highly toxic to arthropods. (5) The above fractions demonstrated a high phospholipase activity corresponding to about 80 per cent of the total activity of the whole venom. The link between phospholipase and toxicity to arthropods will serve as a target for further investigation.It appears that the phenomenon of diversity in toxic activities of different proteins to different groups of organism, as previously demonstrated in scorpion venoms, is equally shared by elapid snake venoms.  相似文献   

11.
K A Muszkat  I Khait  K Hayashi  N Tamiya 《Biochemistry》1984,23(21):4913-4920
The accessibility of surface tyrosines, histidines, and tryptophans in snake venom neurotoxins (short and long) and in membranotoxins to excited triplet 10-(carboxyethyl)-flavin was studied by photochemically induced dynamic nuclear polarization at 270 MHz. Trp-29 is accessible in the short neurotoxins--erabutoxins a, b, and c and cobrotoxin--and also in the long neurotoxins--alpha-cobratoxin and alpha-bungarotoxin. Tyr-25 is practically inaccessible in all neurotoxins. Tyr-39 in cobrotoxin and Tyr-55 in alpha-bungarotoxin are accessible. His-6 (revised sequence) is inaccessible in the erabutoxins while His-26 is only very weakly accessible. His-22 of alpha-cobratoxin is inaccessible as are His-4 and -68 in alpha-bungarotoxin and His-4 of cobrotoxin. His-33 of cobrotoxin is accessible. The rigidity order alpha-bungarotoxin greater than or equal to alpha-cobratoxin greater than or equal to erabutoxins, with respect to the unfolding effect of 7 M urea, was deduced in this study. In the membranotoxins studied (cardiotoxin and its analogues I, II, and IV as well as cytotoxin I and II), the two tyrosines Tyr-25 and Tyr-58 are only weakly accessible. Tyr-14 is completely accessible and so is in all probability Tyr-29. These studies allow deductions to be made about the accessibilities in analogous systems. Thus, the accessibility of His-33 and the inaccessibility of His-4 in cobrotoxin can be used to deduce the conformations of these residues in a large group of neurotoxins including the alpha-toxin of Naja nigricollis, neurotoxin II of Naja naja oxiana, and neurotoxins I and III of Naja mossambica mossambica.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The Malayan krait (Bungarus candidus) is one of the medically most important snake species in Southeast Asia. The venom from this snake has been shown to posses both presynaptic and post-synaptic neurotoxins. We have isolated a previously uncharacterized post-synaptic neurotoxin - alphaN3 from the venom of B. candidus. Isolation of the toxin was achieved in three successive chromatography steps - gel filtration on a Sephadex G75 column, followed by ion exchange chromatography (Mono-S strong cationic exchanger) and a final reverse-phase chromatography step (PRO-RPC C18 column). Purified toxin alphaN3 was shown to have an apparent molecular weight of ∼7 to 8 kDa on SDS-PAGE. The complete amino acid sequence of toxin alphaN3 was determined by Edman degradation and was found to share a high degree of homology with known post-synaptic neurotoxins (93% with alpha-bungarotoxin from Bungarus multicinctus, 50% with alpha cobratoxin from Naja kaouthia). The intravenous LD50 of toxin alphaN3 was determined to be 0.16 ± 0.09 μg/g in mice which is comparable to alpha-bungarotoxin from B. multicinctus. Experiments with isolated nerve-muscle preparations suggested that toxin alphaN3 was a post-synaptic neurotoxin that produced complete blockade of neuromuscular transmission by binding to nicotinic acetylcholine receptors.  相似文献   

13.
P E Bougis  P Marchot  H Rochat 《Biochemistry》1986,25(22):7235-7243
The vast majority of Elapidae snake venoms, genus Naja, includes three classes of toxic polypeptides: alpha-neurotoxins, phospholipases A2, and cardiotoxins. A new experimental approach using reverse-phase high-performance liquid chromatography in particular has been developed, allowing their respective resolution, identification, and quantitation from milligram quantities of venom. First, definition of optimal chromatographic conditions for Naja mossambica mossambica toxins has been ascertained. Different column packing and solvent systems were compared for their efficiency, with particular attention to the ionic strength of the aqueous solvent. A medium-chain alkyl support (octyl) in conjunction with a volatile ammonium formate (0.15 M, pH 2.70)/acetonitrile solvent system was found to be particularly effective. All the components known until now from this venom could be resolved in a single step, and the elution order was alpha-neurotoxins, phospholipases A2, and cardiotoxins with a total recovery of absorbance and toxicity. Then, with these suitable conditions, we describe a new major cardiotoxin molecule in this venom by hydrophobic and not ionic-charge discrimination. Second, specific assays were designed to detect alpha-neurotoxin and phospholipase A2 activities in chromatographic fractions: alpha-neurotoxin activity was determined by competition for the binding of a radiolabeled alpha-neurotoxin to the acetylcholine receptor of the ray electric organ, and phospholipase A2 activity was defined by the enzymatic activity of these toxins with a fluorescent phospholipid as substrate. Finally, the applicability of these new methods to study other Naja snake venoms was demonstrated.  相似文献   

14.
The effects of cardiotoxin fractions from Naja naja kaouthia and Naja naja atra snake venoms and synthetic melittin peptide were examined on lipolytic activity in red blood cells and primary skeletal muscle cultures. Both native cardiotoxin fractions caused considerable production of free fatty acids in red blood cells. This production was abolished when the fractions were first treated with p-bromophenacyl bromide to reduce the venom phospholipase A2 activity contamination. In equine and human primary cultures of skeletal muscle, the N. n. kaouthia cardiotoxin (10 microM) and melittin (2 microM) caused a breakdown of phospholipids and production of free fatty acids and diacylglycerol in the absence of lysophospholipid formation. Additionally, melittin at higher concentrations (10 microM) caused triglyceride breakdown. These studies do not support the suggestion that snake venom cardiotoxins and melittin selectively activate endogenous phospholipase A2 activity. Instead, the toxins primarily activate endogenous phospholipase C activity and, in the case of melittin at high concentrations, triglyceride lipase activity.  相似文献   

15.
Weak toxin from Naja kaouthia (WTX) belongs to the group of nonconventional “three-finger” snake neurotoxins. It irreversibly inhibits nicotinic acetylcholine receptors and allosterically interacts with muscarinic acetylcholine receptors (mAChRs). Using site-directed mutagenesis, NMR spectroscopy, and computer modeling, we investigated the recombinant mutant WTX analogue (rWTX) which, compared with the native toxin, has an additional N-terminal methionine residue. In comparison with the wild-type toxin, rWTX demonstrated an altered pharmacological profile, decreased binding of orthosteric antagonist N-methylscopolamine to human M1- and M2-mAChRs, and increased antagonist binding to M3-mAChR. Positively charged arginine residues located in the flexible loop II were found to be crucial for rWTX interactions with all types of mAChR. Computer modeling suggested that the rWTX loop II protrudes to the M1-mAChR allosteric ligand-binding site blocking the entrance to the orthosteric site. In contrast, toxin interacts with M3-mAChR by loop II without penetration into the allosteric site. Data obtained provide new structural insight into the target-specific allosteric regulation of mAChRs by “three-finger” snake neurotoxins.  相似文献   

16.

Background

The optimization of snakebite management and the use of antivenom depend greatly on the knowledge of the venom''s composition as well as its pharmacokinetics. To date, however, pharmacokinetic reports on cobra venoms and their toxins are still relatively limited. In the present study, we investigated the pharmacokinetics of Naja sumatrana (Equatorial spitting cobra) venom and its major toxins (phospholipase A2, neurotoxin and cardiotoxin), following intravenous and intramuscular administration into rabbits.

Principal findings

The serum antigen concentration-time profile of the N. sumatrana venom and its major toxins injected intravenously fitted a two-compartment model of pharmacokinetics. The systemic clearance (91.3 ml/h), terminal phase half-life (13.6 h) and systemic bioavailability (41.9%) of N. sumatrana venom injected intramuscularly were similar to those of N. sputatrix venom determined in an earlier study. The venom neurotoxin and cardiotoxin reached their peak concentrations within 30 min following intramuscular injection, relatively faster than the phospholipase A2 and whole venom (Tmax = 2 h and 1 h, respectively). Rapid absorption of the neurotoxin and cardiotoxin from the injection site into systemic circulation indicates fast onsets of action of these principal toxins that are responsible for the early systemic manifestation of envenoming. The more prominent role of the neurotoxin in N. sumatrana systemic envenoming is further supported by its significantly higher intramuscular bioavailability (Fi.m. = 81.5%) compared to that of the phospholipase A2 (Fi.m. = 68.6%) or cardiotoxin (Fi.m. = 45.6%). The incomplete absorption of the phospholipase A2 and cardiotoxin may infer the toxins'' affinities for tissues at the injection site and their pathological roles in local tissue damages through synergistic interactions.

Conclusion/Significance

Our results suggest that the venom neurotoxin is absorbed very rapidly and has the highest bioavailability following intramuscular injection, supporting its role as the principal toxin in systemic envenoming.  相似文献   

17.
The interaction of cardiotoxin IIa, a small basic protein extracted from Naja mossambica mossambica venom, with dimyristoylphosphatidic acid (DMPA) membranes has been investigated by solid-state 31P nuclear magnetic resonance spectroscopy. Both the spectral lineshapes and transverse relaxation time values have been measured as a function of temperature for different lipid-to-protein molar ratios. The results indicate that the interaction of cardiotoxin with DMPA gives rise to the complete disappearance of the bilayer structure at a lipid-to-protein molar ratio of 5:1. However, a coexistence of the lamellar and isotropic phases is observed at higher lipid contents. In addition, the number of phospholipids interacting with cardiotoxin increases from about 5 at room temperature to approximately 15 at temperatures above the phase transition of the pure lipid. The isotropic structure appears to be a hydrophobic complex similar to an inverted micellar phase that can be extracted by a hydrophobic solvent. At a lipid-to-protein molar ratio of 40:1, the isotropic structure disappears at high temperature to give rise to a second anisotropic phase, which is most likely associated with the incorporation of the hydrophobic complex inside the bilayer.  相似文献   

18.
Secretory phospholipase A2 (sPLA2) is a critical component of insect and snake venoms and is secreted by mammalian leukocytes during inflammation. Elevated secretory PLA2 concentrations are associated with autoimmune diseases and septic shock. Many sPLA2’s do not bind to plasma membranes of quiescent cells but bind and digest phospholipids on the membranes of stimulated or apoptotic cells. The capacity of these phospholipases to digest membranes of stimulated or apoptotic cells correlates to the exposure of phosphatidylserine. In the present study, the ability of the phosphatidyl-L-serine-binding protein, lactadherin to inhibit phospholipase enzyme activity has been assessed. Inhibition of human secretory phospholipase A2-V on phospholipid vesicles exceeded 90%, whereas inhibition of Naja mossambica sPLA2 plateaued at 50–60%. Lactadherin inhibited 45% of activity of Naja mossambica sPLA2 and >70% of human secretory phospholipase A2-V on the membranes of human NB4 leukemia cells treated with calcium ionophore A23187. The data indicate that lactadherin may decrease inflammation by inhibiting sPLA2.  相似文献   

19.
The effect of cardiotoxin IIa from Naja mossambica mossambica, a small basic protein extracted from snake venom, on dimyristoylphosphatidic acid (DMPA) and on equimolar mixtures of DMPA and dimyristoylphosphatidylcholine (DMPC) has been studied by Fourier transform infrared spectroscopy. The interaction of cardiotoxin with DMPA dispersions decreases both the cooperativity of the phase transition of the lipid and the molecular order of the lipid acyl chains in the gel phase. This effect increases with the proportion of the toxin in the complexes and leads to the total abolition of the phase transition of DMPA at a lipid-to-protein molar ratio of 5. Small-angle X-ray results demonstrate that the structure of the lipid-protein complexes is poorly ordered and gives rise to broad diffusion peaks rather than to well-resolved diffraction patterns. Infrared spectra of oriented cardiotoxin-DMPA films show that the protein is not homogeneously oriented with respect to the bilayer surface. The destabilization of the gel-phase structure of DMPA by cardiotoxin also results in a deeper water penetration in the interfacial region of the lipid since more carbonyl ester groups appear to be hydrogen bonded in the presence of the toxin. The infrared results on the phosphate group vibrations also indicate clearly that the basic residues of cardiotoxin interact strongly with the phosphate group of DMPA that becomes partly ionized at a pH as low as 6.5. The results obtained on the interaction of cardiotoxin with an equimolar mixture of DMPA and DMPC clearly demonstrate the ability of this toxin to induce lateral phase separation in this mixture with one phase containing DMPA-rich domains perturbed by cardiotoxin while the second phase is composed of regions enriched in DMPC. Comparison of the results of the current study with those obtained on other basic proteins and polypeptides suggests that charge-induced phase separation occurs only when the charge density on certain regions of the protein structure is high enough to lead to efficient electrostatic interactions with anionic phospholipids. This condition occurs only when the conformation of the protein or polypeptide is well-ordered at the lipid interface.  相似文献   

20.
Cardiotoxins are small basic proteins which cause heart failure when they are injected in vivo. In order to better understand their molecular mode of action, short peptides designed on the model of the first loop of the molecule of cardiotoxin IV from Naja mossambica mossambica venom have been synthetized by the solid-phase procedure of Merrifield. These peptides express lethality in mouse when they are injected intravenously. Taking into account the respective molecular weights, they are 3.5 to 5% as toxic as the cardiotoxin. Furthermore, the symptomatology they induce is undistinguishable from that induced by cardiotoxins. These results strongly support our previous hypothesis that the first loop of the molecule is the toxic site of cardiotoxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号