首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have used improved miniaturized adenosine biosensors to measure adenosine release during hypoxia from within the CA1 region of rat hippocampal slices. These microelectrode biosensors record from the extracellular space in the vicinity of active synapses as they detect the synaptic field potentials evoked in area CA1 by stimulation of the afferent Schaffer collateral-commissural fibre pathway. Our new measurements demonstrate the rapid production of adenosine during hypoxia that precedes and accompanies depression of excitatory transmission within area CA1. Simultaneous measurement of adenosine release and synaptic transmission gives an estimated IC50 for adenosine on transmission in the low micromolar range. However, on reoxygenation, synaptic transmission recovers in the face of elevated extracellular adenosine and despite a post-hypoxic surge of adenosine release. This may indicate the occurrence of apparent adenosine A1 receptor desensitization during metabolic stress. In addition, adenosine release is unaffected by pharmacological blockade of glutamate receptors and shows depletion on repeated exposure to hypoxia. Our results thus suggest that adenosine release is not a consequence of excitotoxic glutamate release. The potential for adenosine A1 receptor desensitization during metabolic stress implies that its prevention may be beneficial in extending adenosine-mediated neuroprotection in a variety of clinically relevant conditions.  相似文献   

2.
Calcium involved in basal ganglionic transmission and long-term potentiation (LTP) can arise either by influx from the extracellular medium or release from intracellular stores. No attempts have yet been made to concurrently explore the contributions of extracellular and intracellular Ca2+ to basal ganglionic transmission or LTP. Here, we investigate this subject using the superior cervical ganglion of the rat. To explore the extracellular Ca2+ contribution, we evaluated basal transmission and LTP at different extracellular Ca2+ concentrations. To assess intracellular Ca2+ release, we explored the contribution of the calcium-induced calcium release process by overactivation or blockade of ryanodine-sensitive Ca2+ receptor channel with caffeine, and also by blocking either IP3R with Xestospongin C or the sarco(endo)plasmic reticulum Ca2+-ATPase pump with thapsigargin. Extracellular Ca2+ affected ganglionic basal transmission and LTP to different extents. While 25% of the physiological Ca2+ concentration supported 80% of basal transmission, 50% of normal Ca2+ was required to achieve 80% of LTP. Notably, disruption of intracellular Ca2+ release by all the drugs tested apparently did not affect basal ganglionic transmission but impaired LTP. We conclude that basal transmission requires only a small level of Ca2+ entry, while LTP expression not only requires more Ca2+ entry but is also dependent on Ca2+ release from intracellular stores.  相似文献   

3.
In the spinal cord dorsal horn, excitatory sensory fibers terminate adjacent to interneuron terminals. Here, we show that kainate (KA) receptor activation triggered action potential-independent release of GABA and glycine from dorsal horn interneurons. This release was transient, because KA receptors desensitized, and it required Na+ entry and Ca2+ channel activation. KA modulated evoked inhibitory transmission in a dose-dependent, biphasic manner, with suppression being more prominent. In recordings from isolated neuron pairs, this suppression required GABA(B) receptor activation, suggesting that KA-triggered GABA release activated presynaptic GABA(B) autoreceptors. Finally, glutamate released from sensory fibers caused a KA and GABA(B) receptor-dependent suppression of inhibitory transmission in spinal slices. Thus, we show how presynaptic KA receptors are linked to changes in GABA/glycine release and highlight a novel role for these receptors in regulating sensory transmission.  相似文献   

4.
Feng YP  Yang K  Li YQ 《生理科学进展》2001,32(3):225-228
疹髓背角浅层是传递和调制外周伤害性信息的关键部位。起源于脑干的去甲肾上腺素(NA)能纤维终止脊髓背角,它们释放的NA具有抑制初级传入末梢释放谷氨酸和P物质、增加Ⅱ层(胶状质)抑制性神经活性物质释放的作用。此外,形态学研究提示NA可能直接抑制Ⅰ/Ⅲ层向丘脑传递伤害性信息的投射神经元。NA可能通过以上途径,实现对外周伤害性信息传递的调制而发挥镇痛作用。  相似文献   

5.
神经营养因子对神经肌肉接头传递的调制作用   总被引:3,自引:0,他引:3  
运动单位由运动神经元及其支配的肌纤维组成。神经肌肉接头(neuromuscular junction,NMJ)传递受到严密的调节,因而能和运动单位的活动协调一致。在NMJ,神经调制物质的释放与运动单位的活动有关,并能决定突触传递的效能。脑源性神经营养因子(brain—derived neurotrophic factor,BDNF)和神经营养因子4(neurotrophin-4,NT-4)由运动神经末梢和肌纤维产生。肌肉释放营养因子受肌肉活动调节。在NMJ,BDNF和NT-4通过激活酪氨酸激酶B受体(tyrosine kinase receptor B,TrkB),能加强自发性和诱导性的突触活动。突触前Ca^2 量的迅速增加或突触胞吐过程的易化,都能增加突触囊泡的释放,从而改善NMJ的突触传递。事实上,BDNF能促进突触前细胞内Ca^2 的释放,TrkB的激活也能通过有丝分裂活化蛋白激酶,引起突触素I(synapsinI)的磷酸化,进而增加可释放的突触囊泡的数量。在NMJ,神经营养因子还能通过影响神经调节素(neuregulin)或其他神经源性调制物质的局部释放,对接头传递进行调节。本文对近年来在NMJ突触传递的调节,运动单位的NMJ特性以及神经营养因子对突触传递效能的影响等方面的研究进展做一综述。  相似文献   

6.
J S Isaacson 《Neuron》1999,23(2):377-384
In the CNS, glutamate typically mediates excitatory transmission via local actions at synaptic contacts. In the olfactory bulb, mitral cell dendrites release glutamate at synapses formed only onto the dendrites of inhibitory granule cells. Here, I show excitatory transmission mediated solely by transmitter spillover between mitral cells in olfactory bulb slices. Dendritic glutamate release from individual mitral cells causes self-excitation via local activation of N-methyl-D-aspartate (NMDA) receptors. Paired recordings reveal that glutamate release from one cell generates NMDA receptor-mediated responses in neighboring mitral cells that are enhanced by blockade of glutamate uptake. Furthermore, spillover generates spontaneous NMDA receptor-mediated population responses. This simultaneous activation of neighboring mitral cells by a diffuse action of glutamate provides a mechanism for synchronizing olfactory principal cells.  相似文献   

7.
Linalool, a monoterpene compound prevalent in essential oil of plant species traditionally used as sedatives, has been characterized as anticonvulsant in several experimental models. Linalool inhibits the binding of [3H]glutamate and [3H]dizocilpine to brain cortical membranes, indicating a participation of the glutamatergic transmission its mechanism of action. In this study, we investigated the effects of linalool on [3H]glutamate release (basal and potassium-stimulated) and [3H]glutamate uptake in mice cortical synaptosomes. Linalool significantly reduced potassium-stimulated glutamate release as well as glutamate uptake, not interfering with basal glutamate release. The data indicates that linalool may interfere with several relevant elements of the glutamatergic transmission, including detriment of the K+-stimulated glutamate release.  相似文献   

8.
Cachope R  Mackie K  Triller A  O'Brien J  Pereda AE 《Neuron》2007,56(6):1034-1047
Endocannabinoids are well established as inhibitors of chemical synaptic transmission via presynaptic activation of the cannabinoid type 1 receptor (CB1R). Contrasting this notion, we show that dendritic release of endocannabinoids mediates potentiation of synaptic transmission at mixed (electrical and chemical) synaptic contacts on the goldfish Mauthner cell. Remarkably, the observed enhancement was not restricted to the glutamatergic component of the synaptic response but also included a parallel increase in electrical transmission. This effect involved the activation of CB1 receptors and was indirectly mediated via the release of dopamine from nearby varicosities, which in turn led to potentiation of the synaptic response via a cAMP-dependent protein kinase-mediated postsynaptic mechanism. Thus, endocannabinoid release can potentiate synaptic transmission, and its functional roles include the regulation of gap junction-mediated electrical synapses. Similar interactions between endocannabinoid and dopaminergic systems may be widespread and potentially relevant for the motor and rewarding effects of cannabis derivatives.  相似文献   

9.
Changes in endogenous serotonin (5-HT) metabolism after in vivo stimulation of GABAergic transmission were investigated in the rat suprachiasmatic area (SCA). Activation of GABA transmission was performed by systemic administration of either amino-oxyacetic acid: AOAA, a GABA-transaminase inhibitor or RS baclofen, a GABA B agonist. After drugs administration, the amounts of endogenous 5-HT and 5-HIAA were measured. The release and synthesis of 5-HT were investigated in vitro, using a static incubation of tissue fragments. AOAA or RS baclofen induced an increase in endogenous 5-HT content but did not affect 5-hydroxyindole-acetic acid (5-HIAA). Both drugs induced an increase in the release and synthesis of 5-HT. Detailed study of the effects of AOAA over time on 5-HT metabolism showed that the increase in 5-HT release preceded the increase in amine synthesis. These results suggest that the in vivo stimulation of GABA transmission induces an increase in metabolic activity of the 5-HT neuronal system in the SCA. This effect may likely be mediated via activation of GABA B receptors.  相似文献   

10.
Associations between marine invertebrates and chemoautotrophic bacteria constitute a wide field for the study of symbiotic associations. In these interactions, symbiont transmission must represent the cornerstone allowing the persistence of the association throughout generations. Within Bivalvia , in families such as Solemyidae or Vesicomyidae , symbiont transmission is undoubtedly vertical. However, in Lucinidae , symbiont transmission is described in the literature as 'environmental', symbionts being acquired from the environment by the new host generations. Hence, if there is transmission, symbionts should be transmitted from adults to juveniles via the environment. Consequently, we should observe a release of the symbiont by adults. We attempted to detect such a release within two Lucinidae species of the genus Codakia . We sampled 10 Codakia orbicularis and 20 Codakia orbiculata distributed in 10 crystallizing dishes containing filtered seawater. During 1 month of investigation, we analyzed water of the dishes in order to detect any release of a symbiont using catalyzed report deposition-FISH techniques. For 140 observations realized during this period, we did not observe any release of symbionts. This suggests that the idea of host-to-host passage in Lucinidae is inaccurate. We could therefore consider that the transmission mode from generation to generation does not occur within Lucinidae , symbiosis appearing to be advantageous in this case only for the host, and constitutes an evolutionary dead-end for the bacteria.  相似文献   

11.
1. The adipokinetic hormone release, which can be induced by anticholinesterases, is reduced by depleting the content of monoamines in the nervous system. 2. The participation of monoamines in the pathway of release of adipokinetic hormone is studied in vivo and in vitro. 3. A possible mechanism for anticholinesterase-induced release of this hormone involving cholinergic and aminergic transmission is postulated.  相似文献   

12.
Gamma-aminobutyric acid (GABA)-mediated transmission in the medial preoptic area (MPOA) of the hypothalamus plays an important role in functions such as sex steroid hormone dynamics and control of body temperature. The action of allopregnanolone, the primary metabolite of progesterone, on GABAergic transmission was investigated by employing patch clamp whole cell recording on acutely dissociated rat MPOA neurons with the functional connection of presynaptic terminals. Allopregnanolone enhanced spontaneous GABA release on the MPOA neurons and induced prolonged decay of miniature GABAergic-inhibitory postsynaptic currents (mIPSCs). The facilitation of GABA release from the presynaptic terminals by allopregnanolone disappeared in Ca2+-free extracellular solution. The presynaptic action of this neurosteroid was also blocked by bumetanide, a blocker of cation-Cl- cotransporters, and by removal of extracellular Na+. The results suggest that allopregnanolone enhances GABAergic transmission at the MPOA neurons by pre- and postsynaptic mechanisms. The enhancement of GABA release by allopregnanolone might require a high Cl- concentration in the presynaptic terminal maintained by Na+-dependent, bumetanide-sensitive mechanisms (e.g., Na+-K+-Cl- cotransporter) and might be mediated by Ca2+ influx into presynaptic terminal.  相似文献   

13.
Early in development, excitatory synapses transmit with low efficacy, one mechanism for which is a low probability of transmitter release (Pr). However, little is known about the developmental mechanisms that control activity-dependent maturation of the presynaptic release. Here, we show that during early development, transmission at CA3-CA1 synapses is regulated by a high-affinity, G protein-dependent kainate receptor (KAR), which is endogenously activated by ambient glutamate. By tonically depressing glutamate release, this mechanism sets the dynamic properties of neonatal inputs to favor transmission during high frequency bursts of activity, typical for developing neuronal networks. In response to induction of LTP, the tonic activation of KAR is rapidly down regulated, causing an increase in Pr and profoundly changing the dynamic properties of transmission. Early development of the glutamatergic connectivity thus involves an activity-dependent loss of presynaptic KAR function producing maturation in the mode of excitatory transmission from CA3 to CA1.  相似文献   

14.
The effects of treatment with dopamine agonists and 6-hydroxydopamine on the release of opioid peptides from the myenteric plexus of guinea-pig ileum were examined. Apomorphine or bromocriptine treatment at doses that act on dopamine autoreceptors to inhibit dopamine release resulted in a significant elevation of the release of opioid peptides. 6-hydroxydopamine treatment, which produces a lesion of catecholaminergic nerve terminals also resulted in an increase in opioid peptide release. These findings indicate that interruption of dopaminergic transmission in the myenteric plexus produces an increase in the release of opioid peptides and suggest an inhibitory modulation of opioid peptidergic neurons by dopamine systems in the myenteric plexus of the guinea-pig ileum.  相似文献   

15.
BackgroundCerebellar parallel fibres release glutamate at both the synaptic active zone and at extrasynaptic sites—a process known as ectopic release. These sites exhibit different short-term and long-term plasticity, the basis of which is incompletely understood but depends on the efficiency of vesicle release and recycling. To investigate whether release of calcium from internal stores contributes to these differences in plasticity, we tested the effects of the ryanodine receptor agonist caffeine on both synaptic and ectopic transmission.MethodsWhole cell patch clamp recordings from Purkinje neurons and Bergmann glia were carried out in transverse cerebellar slices from juvenile (P16-20) Wistar rats.ConclusionsWe conclude that caffeine increases release probability and inhibits vesicle recovery at parallel fibre synapses, independently of known pharmacological targets. This complex effect would lead to potentiation of transmission at fibres firing at low frequencies, but depression of transmission at high frequency connections.  相似文献   

16.
Nurrish S  Ségalat L  Kaplan JM 《Neuron》1999,24(1):231-242
We show that serotonin inhibits synaptic transmission at C. elegans neuromuscular junctions, and we describe a signaling pathway that mediates this effect. Release of acetylcholine from motor neurons was assayed by measuring the sensitivity of intact animals to the acetylcholinesterase inhibitor aldicarb. By this assay, exogenous serotonin inhibited acetylcholine release, whereas serotonin antagonists stimulated release. The effects of serotonin on synaptic transmission were mediated by GOA-1 (a Galpha0 subunit) and DGK-1 (a diacylglycerol [DAG] kinase), both of which act in the ventral cord motor neurons. Mutants lacking goa-1 G(alpha)0 accumulated abnormally high levels of the DAG-binding protein UNC-13 at motor neuron nerve terminals, suggesting that serotonin inhibits synaptic transmission by decreasing the abundance of UNC-13 at release sites.  相似文献   

17.
《The Journal of cell biology》1983,96(6):1517-1522
Synaptic transmission of the single gene mutant, shibirets1 (shi), of Drosophila melanogaster is reversibly blocked by elevated temperature. The presynaptic mechanism of transmission was studied in the neuromuscular junction of the dorsal longitudinal flight muscle of this mutant. It was observed that when the temperature was raised to 29 degrees C in shi flies, the amplitude of the excitatory junction potential (EJP) greatly diminished, the frequency of spontaneously released miniature excitatory junction potentials (MEJP's) was greatly reduced, and almost complete vesicle depletion was observed. These conditions were reversible if the temperature was lowered to 19 degrees C. These data suggest that the block in transmission is a result of vesicle depletion. It is suggested that depletion occurs not as a result of excessive release of transmitter but rather as a result of a block in the recycling of vesicles, which causes depletion as exocytosis (transmitter release) proceeds normally.  相似文献   

18.
Adenosine is released from the compromised brain and exerts a predominately neuroprotective influence. However, the time-course of adenosine release and its relationship to synaptic activity during metabolic stress is not fully understood. Here, we describe experiments using an enzyme-based adenosine sensor to show that adenosine potently (IC50 approximately 1 microm) inhibits excitatory synaptic transmission in area CA1 during oxygen/glucose deprivation ('ischaemia'), and that the prolonged post-ischaemic presence of extracellular adenosine sustains the depression of the field excitatory postsynaptic potential (fEPSP). N-methyl-D-aspartate (NMDA) receptor antagonism promotes post-ischaemic recovery of the fEPSP, in parallel with reduced release of adenosine. Paradoxically, however, after ischaemia the fEPSP recovers in the face of concentrations of adenosine capable of fully eliminating synaptic transmission during ischaemia. This hysteresis is not prevented by NMDA receptor antagonism, is observed during repeated ischaemia when adenosine release is reduced, and does not reflect desensitization of adenosine A1 receptors. We conclude that adenosine exerts powerful inhibitory actions on excitatory synaptic transmission both during, and for some considerable time after, ischaemia. Therapeutic strategies designed to exploit both the continued presence of adenosine and activity of A1 receptors could provide benefits in individuals who have suffered acute injury to the CNS.  相似文献   

19.
We have elucidated some of the mechanisms by which ethanol (EtOH) reduces synaptic efficacy at model glutamatergic synapses. The crayfish phasic and tonic neuromuscular junctions are superb models for directly assessing the effects of EtOH on pre-synaptic components of synaptic transmission. The ability to perform quantal analysis of synaptic transmission has allowed us to assess pre-synaptic alterations of release. Using this system, we report that the application of EtOH, within a range observed in intoxicated humans (44 and 88 mM), resulted in a diminution of excitatory post-synaptic potentials (EPSP) amplitudes. Additionally, using focal macro-patch recordings, quantal synaptic currents were recorded to assess the pre-synaptic component as potential target sites for EtOH's action. At the tonic neuromuscular junctions, EtOH (88 mM) reduced the probability of release (p), and in some cases, reduced the number of the release sites (n), but did not alter facilitation index nor did it affect the latency of vesicular release. At the phasic neuromuscular junction, a reduction in synaptic charge occurred during the presence of EtOH. Thus, the observed decrease in synaptic strength is at least partially attributable to a pre-synaptic alteration, specifically the release of fewer vesicles.  相似文献   

20.
The roles of D2 and D1 dopaminergic receptors on the regulation of striatal acetylcholine (ACh) release in vivo were examined for a period of 120 min after acute (2 h) or prolonged (16 h) depletion of brain dopamine (DA) by alpha-methyl-p-tyrosine. The reduction of DA transmission did not affect basal ACh output after 2 h but markedly lowered ACh release by 16 h (50%). Acute alpha-methyl-p-tyrosine pretreatment prevented the reduction of ACh release by the D1 antagonist SCH 23390 and its increase by the D2 antagonist, remoxipride, consistent with a drastic reduction of DA transmission at both DA receptors. However, 16 h after alpha-methyl-p-tyrosine, the effect of remoxipride on ACh release was restored, but SCH 23390 still had no effect, suggesting that the D2 inhibitory tone on ACh release had recovered, whereas the reduction of the D1 facilitatory influence persisted. The D1 facilitatory control of ACh neurotransmission thus appears to be more sensitive than the D2 inhibitory control to a reduction in DA transmission. The new model of DA-ACh interaction resulting from these data casts fresh light on the relationship between changes in DA transmission and extrapyramidal motor function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号