首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic environmental exposure to metal toxicants such as chromium and arsenic is closely related to the development of several types of common cancers. Genetic and epigenetic studies in the past decade reveal that post-translational modifications of histones play a role in metal carcinogenesis. However, exact molecular mechanisms of metal carcinogenesis remain to be elucidated. In this study we found that As2O3, an environmental metal toxicant, upregulated overall modifications of many cellular proteins by SUMO2/3. Sumoylated proteins from arsenic-treated cells constitutively expressing His6-SUMO2 were pulled down by Ni-IDA resin under denaturing conditions. Mass spectrometric analysis revealed over 100 proteins that were potentially modified by sumoylation. Mus81, a DNA endonuclease involved in homologous recombination repair, was among the identified proteins whose sumoylation was increased after treatment with As2O3. We further showed that K10 and K524 were 2 lysine residues essential for Mus81 sumoylation. Moreover, we demonstrated that Mus81 sumoylation is important for normal mitotic chromosome congression and that cells expressing SUMO-resistant Mus81 mutants displayed compromised DNA damage responses after exposure to metal toxins such as Cr(VI) and arsenic.  相似文献   

2.
Mus81 resolvase and Sgs1 helicase have well-established roles in mitotic DNA repair. Moreover, Mus81 is part of a minor crossover (CO) pathway in the meiosis of budding yeast, plants and vertebrates. The major pathway depends on meiosis-specific synaptonemal complex (SC) formation, ZMM proteins and the MutLγ complex for CO-directed resolution of joint molecule (JM)-recombination intermediates. Sgs1 has also been implicated in this pathway, although it may mainly promote the non-CO outcome of meiotic repair. We show in Tetrahymena, that homologous chromosomes fail to separate and JMs accumulate in the absence of Mus81 or Sgs1, whereas deletion of the MutLγ-component Mlh1 does not affect meiotic divisions. Thus, our results are consistent with Mus81 being part of an essential, if not the predominant, CO pathway in Tetrahymena. Sgs1 may exert functions similar to those in other eukaryotes. However, we propose an additional role in supporting homologous CO formation by promoting homologous over intersister interactions. Tetrahymena shares the predominance of the Mus81 CO pathway with the fission yeast. We propose that in these two organisms, which independently lost the SC during evolution, the basal set of mitotic repair proteins is sufficient for executing meiotic recombination.  相似文献   

3.
We have investigated the variation of proteins from crude homogenates of mouse kidneys in several strains of Mus musculus by means of two-dimensional electrophoresis. In this study, we have used the strains C57BL/6J, DBA/2J, CD-1, M. m. castaneus, and M. m. molossinus, as well as offspring from crosses among these strains. Out of the 100 loci screened, we have found nine loci showing interstrain differences. We have been able to identify three proteins as Id-1, Car-2, and Sep-1. The remaining variants are probably new loci in the mouse. Most of the variants (seven) can be mapped to a chromosome. We have found also that differences in the protein pattern as seen on two-dimensional gels are small among subspecies of Mus musculus.  相似文献   

4.
LINES ONE (L1) is a family of movable DNA sequences found in mammals. To measure the rate of their movement, we have compared the positions of L1 elements within homologous genetic loci that are separated by known divergence times. Two models that predict different outcomes of this analysis have been proposed for the behavior of L1 sequences. (i) Previous theoretical studies of concerted evolution in L1 have indicated that the majority of the 100,000 extant L1 elements may have inserted as recently as within the last 3 million years. (ii) Gene conversion has been proposed as an alternative to a history of prolific recent insertions. To distinguish between these two models, we cloned and characterized two embryonic beta-globin haplotypes from Mus caroli and compared them with those of M. domesticus. In 9 of 10 instances, we observed an L1 element to be present in one chromosome and absent at the same site in a homologous chromosome. This frequency is quantitatively consistent with the known rate of concerted evolution. Therefore, we conclude that gene conversion is not required for concerted evolution of the L1 family in the mouse. Furthermore, we show that the extensive movement of L1 sequences contributes to restriction fragment length polymorphism. L1 insertions may be the predominant cause of restriction fragment length polymorphisms in closely related haplotypes.  相似文献   

5.
Repair of interstrand crosslinks (ICLs) requires multiple-strand incisions to separate the two covalently attached strands of DNA. It is unclear how these incisions are generated. DNA double-strand breaks (DSBs) have been identified as intermediates in ICL repair, but enzymes responsible for producing these intermediates are unknown. Here we show that Mus81, a component of the Mus81-Eme1 structure-specific endonuclease, is involved in generating the ICL-induced DSBs in mouse embryonic stem (ES) cells in S phase. Given the DNA junction cleavage specificity of Mus81-Eme1 in vitro, DNA damage-stalled replication forks are suitable in vivo substrates. Interestingly, generation of DSBs from replication forks stalled due to DNA damage that affects only one of the two DNA strands did not require Mus81. Furthermore, in addition to a physical interaction between Mus81 and the homologous recombination protein Rad54, we show that Mus81(-/-) Rad54(-/-) ES cells were as hypersensitive to ICL agents as Mus81(-/-) cells. We propose that Mus81-Eme1- and Rad54-mediated homologous recombination are involved in the same DNA replication-dependent ICL repair pathway.  相似文献   

6.
DNA repair by homologous recombination is under stringent cell cycle control. This includes the last step of the reaction, disentanglement of DNA joint molecules (JMs). Previous work has established that JM resolving nucleases are activated specifically at the onset of mitosis. In case of budding yeast Mus81‐Mms4, this cell cycle stage‐specific activation is known to depend on phosphorylation by CDK and Cdc5 kinases. Here, we show that a third cell cycle kinase, Cdc7‐Dbf4 (DDK), targets Mus81‐Mms4 in conjunction with Cdc5—both kinases bind to as well as phosphorylate Mus81‐Mms4 in an interdependent manner. Moreover, DDK‐mediated phosphorylation of Mms4 is strictly required for Mus81 activation in mitosis, establishing DDK as a novel regulator of homologous recombination. The scaffold protein Rtt107, which binds the Mus81‐Mms4 complex, interacts with Cdc7 and thereby targets DDK and Cdc5 to the complex enabling full Mus81 activation. Therefore, Mus81 activation in mitosis involves at least three cell cycle kinases, CDK, Cdc5 and DDK. Furthermore, tethering of the kinases in a stable complex with Mus81 is critical for efficient JM resolution.  相似文献   

7.
In eukaryotes, homologs of the Escherichia coli MutS and MutL proteins are crucial for both meiotic recombination and post-replicative DNA mismatch repair. Both pathways require the formation of a MutS homolog complex which interacts with a second heterodimer, composed of two MutL homologs. During mammalian meiosis, it is likely that chromosome synapsis requires the presence of a MSH4-MSH5 heterodimer. PMS2, a MutL homolog, seems to play an important role in this process. A MSH4-MSH5 heterodimer is also likely present later with other MutL homologs (MLH1 and MLH3) and is involved in the crossing-over process. The phenotype of msh4-/- mutant mice and MSH4 immunolocalization on meiotic chromosomes suggest that MSH4 has an early function in mammalian meiotic recombination. Both MSH4 and PMS2 directly interact with the RAD51 DNA strand exchange protein. In addition, MSH4 and RAD51 proteins co-localize on mouse meiotic chromosome cores. These results suggest that MSH4 and its partners could act, just after strand exchange promoted by RAD51, to check the homology of DNA heteroduplexes.  相似文献   

8.
Ho CK  Mazón G  Lam AF  Symington LS 《Molecular cell》2010,40(6):988-1000
Holliday junction (HJ) resolution is required for segregation of chromosomes and for formation of crossovers during homologous recombination. The identity of the resolvase(s) that functions in?vivo has yet to be established, although several proteins able to cut HJs in?vitro have been identified as candidates in yeasts and mammals. Using an assay to detect unselected products of mitotic recombination, we found a significant decrease in crossovers in the Saccharomyces cerevisiae mus81Δ mutant. Yen1 serves a backup function responsible for resolving intermediates in mus81Δ mutants, or when conversion tracts are short. In the absence of both Mus81 and Yen1, intermediates are not channeled exclusively to noncrossover recombinants, but instead are processed by Pol32-dependent break-induced replication (BIR). The channeling of recombination from reciprocal exchange to BIR results in greatly increased spontaneous loss of heterozygosity (LOH) and chromosome mis-segregation in the mus81Δ yen1Δ mutant, typical of the genomic instability found in tumor cells.  相似文献   

9.
Current models for meiotic recombination require that crossovers derive from the resolution of a double-Holliday junction (dHJ) intermediate. In prokaryotes, enzymes responsible for HJ resolution are well characterized but the identification of a eukaryotic nuclear HJ resolvase has been elusive. Indirect evidence suggests that MUS81 from humans and fission yeast encodes a HJ resolvase. We provide three lines of evidence that Mus81/Mms4 is not the major meiotic HJ resolvase in S. cerevisiae: (1) MUS81/MMS4 is required to form only a distinct subset of crossovers; (2) rather than accumulating, dHJ intermediates are reduced in an mms4 mutant; and (3) expression of a bacterial HJ resolvase has no suppressive effect on mus81 meiotic phenotypes. Our analysis also reveals the existence of two distinct classes of crossovers in budding yeast. Class I is dependent upon MSH4/MSH5 and exhibits crossover interference, while class II is dependent upon MUS81/MMS4 and exhibits no interference. mms4 specifically reduces crossing over on small chromosomes, which are known to undergo less interference. The correlation between recombination rate and degree of interference to chromosome size may therefore be achieved by modulating the balance between class I/class II crossovers.  相似文献   

10.
The RAD51 family of proteins is involved in homologous recombination (HR) DNA repair and maintaining chromosome integrity. To identify candidates that interact with HR proteins, the mouse RAD51C, RAD51D and XRCC2 proteins were purified using bacterial expression systems and each of them used to co‐precipitate interacting partners from mouse embryonic fibroblast cellular extracts. Mass spectroscopic analysis was performed on protein bands obtained after 1‐D SDS‐PAGE of co‐precipitation eluates from cell extracts of mitomycin C treated and untreated mouse embryonic fibroblasts. Profiling of the interacting proteins showed a clear bias toward nucleic acid binding and modification proteins. Interactions of four candidate proteins (SFPQ, NONO, MSH2 and mini chromosome maintenance protein 2) were confirmed by Western blot analysis of co‐precipitation eluates and were also verified to form ex vivo complexes with RAD51D. Additional interacting proteins were associated with cell division, embryo development, protein and carbohydrate metabolism, cellular trafficking, protein synthesis, modification or folding, and cell structure or motility functions. Results from this study are an important step toward identifying interacting partners of the RAD51 paralogs and understanding the functional diversity of proteins that assist or regulate HR repair mechanisms.  相似文献   

11.
We have applied EM in situ hybridization (EMISH) and pulsed field gel electrophoresis (PFGE) to samples from diploid primary cell cultures and an established cell line to examine in detail the relative organization of the major and minor satellite DNAs and telomere sequences in the genomes of Mus domesticus and Mus spretus. EMISH localizes the Mus domesticus minor satellite to a single site at the centromere-proximal end of each chromosome. Double label hybridizations with both minor satellite and telomere probes show that they are in close proximity and possibly are linked. In fact, PFGE of M. domesticus DNA digested with Sal I and Sfi I reveals the presence of fragments which hybridize to both probes and is consistent with the physical linkage of these two sequences. The M. domesticus minor satellite is the more abundant satellite in Mus spretus. Its distribution in M. spretus is characterized by diffuse labeling with no obvious concentration near chromosome ends. In addition to this repeat the M. spretus genome contains a small amount of DNA that hybridizes to a M. domesticus major satellite probe. Unlike the M. domesticus minor satellite, it is not telomere proximal but is confined to a domain at the border of the centromere and the long arm. Thus, although both species possess all three sequences, except for the telomeres, their distribution relative to one another is not conserved. Based on the results presented, we propose preliminary molecular maps of the centromere regions of Mus domesticus and Mus spretus.  相似文献   

12.
MSH4 is a meiosis-specific MutS homolog. In yeast, it is required for reciprocal recombination and proper segregation of homologous chromosomes at meiosis I. MLH1 (MutL homolog 1) facilitates both mismatch repair and crossing over during meiosis in yeast. Germ-line mutations in the MLH1 human gene are responsible for hereditary nonpolyposis cancer, but the analysis of MLH1-deficient mice has revealed that MLH1 is also required for reciprocal recombination in mammals. Here we show that hMSH4 interacts with hMLH1. The two proteins are coimmunoprecipitated regardless of the presence of DNA or ATP, suggesting that the interaction does not require the binding of MSH4 to DNA. The domain of hMSH4 responsible for the interaction is in the amino-terminal part of the protein whereas the region that contains the ATP binding site and helix-turn-helix motif does not bind to hMLH1. Immunolocalization analysis shows that MSH4 is present at sites along the synaptonemal complex as soon as homologous chromosomes synapse. The number of MSH4 foci decreases gradually as pachynema progresses. During this transition, MLH1 foci begin to appear and colocalize with MSH4. These results suggest that MSH4 is first required for chromosome synapsis and that this MutS homologue is involved later with MLH1 in meiotic reciprocal recombination.  相似文献   

13.
Seventeen genes controlling the expression of carboxylic ester hydrolases, commonly known as esterases, have been identified in the mouse Mus musculus. Seven esterase loci are found on chromosome 8, where two clusters of esterase loci occur. It seems probable that the genes within these clusters have arisen from a common ancestral gene by tandem duplication. Close linkage of esterase genes is also found in the rat, rabbit, and prairie vole. Some mouse esterases appear to be homologous with certain human esterases. The function of these nonspecific enzymes is still unknown.  相似文献   

14.
The conserved heterodimeric endonuclease Mus81-Eme1/Mms4 plays an important role in the maintenance of genomic integrity in eukaryotic cells. Here, we show that budding yeast Mus81-Mms4 is strictly regulated during the mitotic cell cycle by Cdc28 (CDK)- and Cdc5 (Polo-like kinase)-dependent phosphorylation of the non-catalytic subunit Mms4. The phosphorylation of this protein occurs only after bulk DNA synthesis and before chromosome segregation, and is absolutely necessary for the function of the Mus81-Mms4 complex. Consistently, a phosphorylation-defective mms4 mutant shows highly reduced nuclease activity and increases the sensitivity of cells lacking the RecQ-helicase Sgs1 to various agents that cause DNA damage or replicative stress. The mode of regulation of Mus81-Mms4 restricts its activity to a short period of the cell cycle, thus preventing its function during chromosome replication and the negative consequences for genome stability derived from its nucleolytic action. Yet, the controlled Mus81-Mms4 activity provides a safeguard mechanism to resolve DNA intermediates that may remain after replication and require processing before mitosis.  相似文献   

15.
Targeted gene replacement (TGR) in yeast and mammalian cells is initiated by the two free ends of the linear targeting molecule, which invade their respective homologous sequences in the chromosome, leading to replacement of the targeted locus with a selectable gene from the targeting DNA. To study the postinvasion steps in recombination, we examined the effects of DNA structure-specific proteins on TGR frequency and heteroduplex DNA formation. In strains deleted of RAD1, MSH2, or MSH3, we find that the frequency of TGR is reduced and the mechanism of TGR is altered while the reverse is true for deletion of SGS1, suggesting that Rad1 and Msh2:Msh3 facilitate TGR while Sgs1 opposes it. The altered mechanism of TGR in the absence of Msh2:Msh3 and Rad1 reveals a separate role for these proteins in suppressing an alternate gene replacement pathway in which incorporation of both homology regions from a single strand of targeting DNA into heteroduplex with the targeted locus creates a mismatch between the selectable gene on the targeting DNA and the targeted gene in the chromosome.  相似文献   

16.
A number of genetic markers, including ATP1A3, TGFB, CKMM, and PRKCG, define the genetic region on human chromosome 19 containing the myotonic dystrophy locus. These and a number of other DNA probes have been mapped to mouse chromosome 7 utilizing a mouse Mus domesticus/Mus spretus interspecific backcross segregating for the genetic markers pink-eye dilution (p) and chinchilla (cch). The establishment of a highly syntenic group conserved between mouse chromosome 7 and human chromosome 19q indicates the likely position of the homologous gene locus to the human myotonic dystrophy gene on proximal mouse chromosome 7. In addition, we have mapped the muscle ryanodine receptor gene (Ryr) to mouse chromosome 7 and demonstrated its close linkage to the Atpa-2, Tgfb-1, and Ckmm cluster of genes. In humans, the malignant hyperthermia susceptibility locus (MHS) also maps close to this gene cluster. The comparative mapping data support Ryr as a candidate gene for MHS.  相似文献   

17.
Gene loci controlling cell surface receptors for murine leukemia virus were studied by using murine X Chinese hamster hybrid cells. Hybrids which exclusively segregate murine chromosomes were made by fusing Mus cervicolor and Mus musculus lymphocytes to hamster fibroblasts. Sensitivity to Moloney murine leukemia virus infecotion and specific binding of the envelope glycoprotein of Rauscher murine leukemia virus (gp70) cosegregate and isozyme analysis show an association with chromosome 5 in both species. With the possible exception of one clone, no evidence was found for a proviral integration site independent of chromosome 5. Evidence is presented for additional unlinked ectropic and xenotropic receptors independent of chromosome 5.  相似文献   

18.
A molecular genetic linkage map of mouse chromosome 7   总被引:6,自引:0,他引:6  
A M Saunders  M F Seldin 《Genomics》1990,8(3):525-535
The homology between mouse chromosome 7 and human chromosomes 11, 15, and 19 was examined using interspecific backcross animals derived from mating C3H/HeJ-gld/gld and Mus spretus mice. In an earlier study, we reported on the linkage relationships of 16 loci on mouse chromosome 7 and the homologous relationship between this chromosome and the myotonic dystrophy gene region on human chromosome 19. Segregation analyses were used to extend the gene linkage relationships on mouse chromosome 7 by an additional 21 loci. Seven of these genes (Cyp2a, D19F11S1h, Myod-1, Otf-2, Rnu1p70, Rnu2pa, and Xrcc-1) were previously unmapped in the mouse. Several potential mouse chromosome 7 genes (Mel, Hkr-1, Icam-1, Pvs) did not segregate with chromosome 7 markers, and provisional chromosomal assignments were made. This study establishes a detailed molecular genetic linkage map of mouse chromosome 7 that will be useful as a framework for determining linkage relationships of additional molecular markers and for identifying homologous disease genes in mice and humans.  相似文献   

19.
Y Chromosome Evolution in the Subgenus Mus (Genus Mus)   总被引:6,自引:5,他引:1       下载免费PDF全文
P. K. Tucker  B. K. Lee    E. M. Eicher 《Genetics》1989,122(1):169-179
A 305 base pair DNA sequence isolated from the Y chromosome of the inbred mouse strain C57BL/10 was used to investigate the pattern and tempo of evolution of Y chromosome DNA sequences for five species in the subgenus Mus, including Mus spretus, Mus hortulanus, Mus abbotti, Mus musculus and Mus domesticus. Variation in hybridization patterns between species was characterized by differences in fragment lengths of both intensely and faintly hybridizing fragments, whereas variation in hybridization patterns within species was characterized primarily by differences in fragment lengths of faintly hybridizing fragments. Phylogenetic analyses were conducted based on fragment size variation within and among species. Phylogenetic relationships inferred from these analyses partly agree with the phylogenetic relationships obtained from biochemical and mitochondrial DNA data. We conclude that a set of DNA sequences common to the Y chromosomes of a closely related group of species in the subgenus Mus has evolved rapidly as reflected by sequence divergence and sequence amplification.  相似文献   

20.
DNA mismatch repair ensures genomic stability by correcting biosynthetic errors and by blocking homologous recombination. MutS-like and MutL-like proteins play important roles in these processes. In Escherichia coli and yeast these two types of proteins form a repair initiation complex that binds to mismatched DNA. However, whether human MutS and MutL homologs interact to form a complex has not been elucidated. Using immunoprecipitation and Western blot analysis we show here that human MSH2, MLH1, PMS2 and proliferating cell nuclear antigen (PCNA) can be co-immunoprecipitated, suggesting formation of a repair initiation complex among these proteins. Formation of the initiation complex is dependent on ATP hydrolysis and at least functional MSH2 and MLH1 proteins, because the complex could not be detected in tumor cells that produce truncated MLH1 or MSH2 protein. We also demonstrate that PCNA is required in human mismatch repair not only at the step of repair initiation, but also at the step of repair DNA re-synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号