首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rates of the cross-aminoacylation reactions of tRNAs(Met) catalyzed by methionyl-tRNA synthetases from various organisms suggest the occurrence of two types of tRNA(Met)/methionyl-tRNA synthetase systems. In this study, the tRNA determinants recognized by mammalian or E. coli methionyl-tRNA synthetases, which are representative members of the two types, have been examined. Like its prokaryotic counterpart, the mammalian enzyme utilizes the anticodon of tRNA as main recognition element. However, the mammalian cytoplasmic elongator tRNA(Met) species is not recognized by the bacterial synthetase, and both the initiator and elongator E. coli tRNA(Met) behave as poor substrates of the mammalian cytoplasmic synthetase. Synthetic genes encoding variants of tRNAs(Met), including the elongator one from mammals, were expressed in E. coli. tRNAs(Met) recognized by a synthetase of a given type can be converted into a substrate of an enzyme of the other type by introducing one-base substitutions in the anticodon loop or stem. In particular, a reduction of the size of the anticodon loop of cytoplasmic mammalian elongator tRNA(Met) from 9 to 7 bases, through the creation of an additional Watson-Crick pair at the bottom of the anticodon stem, makes it a substrate of the prokaryotic enzyme and decreases its ability to be methionylated by the mammalian enzyme. Moreover, enlarging the size of the anticodon loop of E. coli tRNA(Metm) from 7 to 9 bases, by disrupting the base pair at the bottom of the anticodon stem, renders the resulting tRNA a good substrate of the mammalian enzyme, while strongly altering its reaction with the prokaryotic synthetase. Finally, E. coli tRNA(Metf) can be rendered a better substrate of the mammalian enzyme by changing its U33 into a C. This modification makes the sequence of the anticodon loop of tRNA(Metf) identical to that of cytoplasmic initiator tRNA(Met).  相似文献   

2.
The specificity of methoxyamine for the cytidine residues in Escherichia coli formylmethionine tRNA is described in detail. Of the nine cytidine residues not involved in hydrogen-bonding in the clover leaf model of the tRNA, three are very reactive (C-1, 75 and 76), three less so (C-16, 17 and 35) and three unreactive (C-33, 49 and 57). Surprisingly, residue C-35 at the 3′ end of the anticodon triplet is not completely modified by methoxyamine.The specificity of 1-cyclohexyl 3-[2-morpholino (4)-ethyl] carbodiimide methotosylate for the uridine and guanosine residues of this tRNA is also described in detail. Of the twelve uridine and guanosine residues not involved in hydrogen-bonding in the secondary structure of the molecule, two are reactive (U-37 and48), one less so (U-18), one partially (U-34), and eightare unreactive (U-8 and 61; G-9, 15, 19, 20, 27 and 46). No guanosine residues in the tRNA are modified by the carbodiimide. The ribosylthymine and pseudouridine residues in loop IV are also unreactive. The extent and position of the carbodiimide modification as a function of time is also described.The importance of particular residues being modified or not under the reaction conditions used is discussed in terms of transfer RNA conformation. A reduction from 10 to 4 mm-magnesium ions in the modification experiments has no apparent effect on the extent and position of the carbodiimide or methoxyamine reactions.  相似文献   

3.
Initiator tRNAs are used exclusively for initiation of protein synthesis and not for the elongation step. We show, in vivo and in vitro, that the primary sequence feature that prevents the human initiator tRNA from acting in the elongation step is the nature of base pairs 50:64 and 51:63 in the TΨC stem of the initiator tRNA. Various considerations suggest that this is due to sequence-dependent perturbation of the sugar phosphate backbone in the TΨC stem of initiator tRNA, which most likely blocks binding of the elongation factor to the tRNA. Because the sequences of all vertebrate initiator tRNAs are identical, our findings with the human initiator tRNA are likely to be valid for all vertebrate systems. We have developed reporter systems that can be used to monitor, in mammalian cells, the activity in elongation of mutant human initiator tRNAs carrying anticodon sequence mutations from CAU to CCU (the C35 mutant) or to CUA (the U35A36 mutant). Combination of the anticodon sequence mutation with mutations in base pairs 50:64 and 51:63 yielded tRNAs that act as elongators in mammalian cells. Further mutation of the A1:U72 base pair, which is conserved in virtually all eukaryotic initiator tRNAs, to G1:C72 in the C35 mutant background yielded tRNAs that were even more active in elongation. In addition, in a rabbit reticulocyte in vitro protein-synthesizing system, a tRNA carrying the TΨC stem and the A1:U72-to-G1:C72 mutations was almost as active in elongation as the elongator methionine tRNA. The combination of mutant initiator tRNA with the CCU anticodon and the reporter system developed here provides the first example of missense suppression in mammalian cells.  相似文献   

4.
In all organisms, translational initiation takes place on the small ribosomal subunit and two classes of methionine tRNA are present. The initiator is used exclusively for initiation of protein synthesis while the elongator is used for inserting methionine internally in the nascent polypeptide chain. The crystal structure of Escherichia coli initiator tRNA(f)(Met) has been solved at 3.1 A resolution. The anticodon region is well-defined and reveals a unique structure, which has not been described in any other tRNA. It encompasses a Cm32*A38 base pair with a peculiar geometry extending the anticodon helix, a base triple between A37 and the G29-C41 pair in the major groove of the anticodon stem and a modified stacking organization of the anticodon loop. This conformation is associated with the three GC basepairs in the anticodon stem, characteristic of initiator tRNAs and suggests a mechanism by which the translation initiation machinery could discriminate the initiator tRNA from all other tRNAs.  相似文献   

5.
Protein synthesis is initiated universally with the amino acid methionine. In Escherichia coli, studies with anticodon sequence mutants of the initiator methionine tRNA have shown that protein synthesis can be initiated with several other amino acids. In eukaryotic systems, however, a yeast initiator tRNA aminoacylated with isoleucine was found to be inactive in initiation in mammalian cell extracts. This finding raised the question of whether methionine is the only amino acid capable of initiation of protein synthesis in eukaryotes. In this work, we studied the activities, in initiation, of four different anticodon sequence mutants of human initiator tRNA in mammalian COS1 cells, using reporter genes carrying mutations in the initiation codon that are complementary to the tRNA anticodons. The mutant tRNAs used are aminoacylated with glutamine, methionine, and valine. Our results show that in the presence of the corresponding mutant initiator tRNAs, AGG and GUC can initiate protein synthesis in COS1 cells with methionine and valine, respectively. CAG initiates protein synthesis with glutamine but extremely poorly, whereas UAG could not be used to initiate protein synthesis with glutamine. We discuss the potential applications of the mutant initiator tRNA-dependent initiation of protein synthesis with codons other than AUG for studying the many interesting aspects of protein synthesis initiation in mammalian cells.  相似文献   

6.
Modified nucleosides are prevalent in tRNA. Experimental studies reveal that modifications play an important role in tuning tRNA activity. In this study, molecular dynamics (MD) simulations were used to investigate how modifications alter tRNA structure and dynamics. The X-ray crystal structures of tRNA-Asp, tRNA-Phe, and tRNA-iMet, both with and without modifications, were used as initial structures for 333-ns time-scale MD trajectories with AMBER. For each tRNA molecule, three independent trajectory calculations were performed. Force field parameters were built using the RESP procedure of Cieplak et al. for 17 nonstandard tRNA residues. The global root-mean-square deviations (RMSDs) of atomic positions show that modifications only introduce significant rigidity to tRNA-Phe’s global structure. Interestingly, regional RMSDs of anticodon stem-loop suggest that modified tRNA has more rigid structure compared to the unmodified tRNA in this domain. The anticodon RMSDs of the modified tRNAs, however, are higher than those of corresponding unmodified tRNAs. These findings suggest that rigidity of the anticodon arm is essential for tRNA translocation in the ribosome complex, and, on the other hand, flexibility of anticodon might be critical for anticodon–codon recognition. We also measure the angle between the 3D L-shaped arms of tRNA; backbone atoms of acceptor stem and TψC stem loop are selected to indicate one vector, and backbone atoms of anticodon stem and D stem loop are selected to indicate the other vector. By measuring the angle between two vectors, we find that the initiator tRNA has a narrower range of hinge motion compared to tRNA-Asp and tRNA-Phe, which are elongator tRNA. This suggests that elongator tRNAs, which might require significant flexibility in this hinge to transition from the A–to-P site in the ribosome, have evolved to specifically accommodate this need.  相似文献   

7.
The specificity of methoxyamine for the cytidine residues in an Escherichia coli leuoine transfer RNA (tRNA1leu is described in detail. Of the six non-hydrogen-bonded cytidine residues in the clover-leaf model of this tRNA, four are very reactive (C-35, 53, 85 and 86) and two are unreactive (C-67 and 79).The specificity of l-cyclohexyl-3-[2-morpholino-(4)-ethyl]carbodiimide methotosylate for the uridine, guanosine and pseudouridine residues in the leucine tRNA was also investigated. The carbodiimide completely modified four uridine residues (U-33, 34, 50 and 51) and partially modified G-37 and Ψ-39. For technical reasons, the sites of partial modification in loop I of the tRNA were difficult to establish. There was no modification of base residues in loop IV nor of U-59 at the base of stem e of the tRNA.The modification patterns described for the leucine tRNA are compared with those observed for the E. coli initiator tRNA1met and su+III tyrosine tRNA. Several general conclusions regarding tRNA conformation are made. In particular, the evidence supporting a diversity of anticodon loop structures amongst tRNAs is discussed.  相似文献   

8.
The bacterial tRNA adenosine deaminase (TadA) generates inosine by deaminating the adenosine residue at the wobble position of tRNA(Arg-2). This modification is essential for the decoding system. In this study, we determined the crystal structure of Aquifex aeolicus TadA at a 1.8-A resolution. This is the first structure of a deaminase acting on tRNA. A. aeolicus TadA has an alpha/beta/alpha three-layered fold and forms a homodimer. The A. aeolicus TadA dimeric structure is completely different from the tetrameric structure of yeast CDD1, which deaminates mRNA and cytidine, but is similar to the dimeric structure of yeast cytosine deaminase. However, in the A. aeolicus TadA structure, the shapes of the C-terminal helix and the regions between the beta4 and beta5 strands are quite distinct from those of yeast cytosine deaminase and a large cavity is produced. This cavity contains many conserved amino acid residues that are likely to be involved in either catalysis or tRNA binding. We made a docking model of TadA with the tRNA anticodon stem loop.  相似文献   

9.
Chemical modification study of aminoacyl-tRNA conformation.   总被引:1,自引:1,他引:0       下载免费PDF全文
Chemical reactivity of cytosines in 32P-labeled E. coli tRNA1Leu, E. coli tRNAPhe and yeast tRNAPhe before and after aminoacylation was examined by use of a cytosine-specific reagent, semicarbazide-bisulfite mixture. In all the three tRNA species examined, the cytosine residues that were susceptible to the modification were the same in the aminoacylated tRNA and the unacylated tRNA. Only a limited number of the cytosine residues were modifiable: those that occur in the anticodon, the 3'-CCA terminus, the D-loop, and the extra loop. The sites accessible by the reagent are in good agreement with the general three-dimensional structure of tRNA proposed in literature. These results indicate that the gross conformation of these tRNAs does not change on aminoacylation, and consequently favor the view that the T psi C(G) sequence could become exposed in later steps of protein synthesis in order to achieve the binding of aminoacyl tRNA to ribosomes.  相似文献   

10.
We have sequenced a methionine tRNA from mosquito mitochondria, and examined its structure using nucleases S1 and T1 under non-denaturing conditions. The sequence is highly homologous to a putative initiator methionine tRNA gene from Drosophila mitochondria. Its anticodon stem contains a run of three G-C base pairs that is characteristic of conventional initiator tRNAs; however, nuclease S1 analysis suggested an anticodon loop configuration characteristic of conventional elongator tRNAs. We propose that this tRNA can assume both initiator and elongator roles.  相似文献   

11.
《FEBS letters》1986,202(1):12-18
The digestion of yeast initiator methionine tRNA with mung bean nuclease and U2 ribonuclease yielded 5'- and 3'-fragments, respectively. These two fragments together represent the entire tRNA sequence except for A35, the central nucleotide of the anticodon, and the CCA terminus. Using RNA ligase, a cytosine was added and the anticodon loop having a C35 was reformed. Subsequent treatment of this product with CCA-transferase yielded a full-length methionine tRNA having an arginine CCU anticodon. This recombinant tRNAMet (CCU) was charged with methionine by the yeast tRNA synthetase. Aminoacylation of the recombinant was however less extensive than in the case of native tRNAMet (CAU). After aminoacylation the recombinant tRNA formed an 80 S ribosomal complex.  相似文献   

12.
The major form of methionine tRNA operational in the elongation of protein synthesis in mouse myeloma cells was purufied from these cells after they had been cultured in the presence of [32P]-phosphate. This [32P]tRNA4-Met species was then digested with T1 RNase or pancreatic RNase so as to obtain both complete and partial RNase digestion products. The nucleotide sequences of these fragments were analysed to enable the derivation of the complete primary structure of this tRNA. tRNA4-Met of mouse myeloma cells is 76 nucleotides in length and contains 15 modified nucleotides. It is the only tRNA yet sequenced which has been found to possess the minor nucleoside 2-methylguanosine (m2G) within the amino acid (a) stem, and also to have an anticodon (c) stem of only 4 and not 5 base-pairs. The loop IV sequence of eukaryotic initiator methionine tRNA (tRNAf-Met) species, -A-U-C-G-m1A-A-A-, IS NOT FOUND IN TRNA4-Met and is therefore absent from at least one of the methionine tRNAs functioning in polypeptide elongation in mammalian cells. This is consistent with the suggested importance of this loop structure in the initiator function of tRNAf-Met in eukaryotic organisms. Three distinct regions of the tRNA cloverleaf, the (b) stem, the anticodon loop (loop II), and loop III, are substantially conserved in structure between tRNAf-Met and tRNA4-Met of mouse myeloma cells. These regions of the structures of mammalian methionine tRNAs probably do not determine whether a certain tRNA-Met will function in the initiation or elongation of protein synthesis, although they might be important in tRNA-Met recognition if the different cytoplasmic tRNA-Met species of mammalian cells are aminoacylated by a single activating enzyme.  相似文献   

13.
We have noticed that during a long storage and handling, the plant methionine initiator tRNA is spontaneously hydrolyzed within the anticodon loop at the C34-A35 phosphodiester bond. A literature search indicated that there is also the case for human initiator tRNAMet but not for yeast tRNAMet i or E. coli tRNAMet f. All these tRNAs have an identical nucleotide sequence of the anticodon stems and loops with only one difference at position 33 within the loop. It means that cytosine 33 (C33) makes the anticodon loop of plant and human tRNAMet i susceptible to the specific cleavage reaction. Using crystallographic data of tRNAMet f of E. coli with U33, we modeled the anticodon loop of this tRNA with C33. We found that C33 within the anticodon loop creates a pocket that can accomodate a hydrogen bonded water molecule that acts as a general base and catalyzes a hydrolysis of C-A bond. We conclude that a single nucleotide change in the primary structure of tRNAMet i made changes in hydration pattern and readjustment in hydrogen bonding which lead to a cleavage of the phosphodiester bond.  相似文献   

14.
The recently deciphered sequence of the human mitochondrial genome is analyzed in the light of an archigenetic hypothesis, according to which mitochondria are derived neither from pro- nor eukaryotes but from more primitive organisms. The possibility that animal mitochondria have only one gene both for elongator and initiator methionine tRNA is supported but C-A pair forming cytosine in the anticodon of these tRNAs is considered to be unmodified. The evolution of the gene and of the codon reading pattern of the methionine tRNA is discussed.  相似文献   

15.
Initiator tRNAs from the cytoplasm of salmon testes and salmon liver have been purified. The nucleotide sequence of these initiator tRNAs has been determined and found identical to that of initiator tRNA from mammalian cytoplasm. The only difference is the extent of modification of the nucleoside located between the dihydrouridine and the anticodon stems. In the salmon tRNAs, this modified nucleoside is predominantly N2N2-dimethyl guanosine, whereas in the mammalian initiator tRNA it is N2-methyl guanosine.  相似文献   

16.
The mode of recognition of tRNAs by aminoacyl-tRNA synthetases and translation factors is largely unknown in archaebacteria. To study this process, we have cloned the wild type initiator tRNA gene from the moderate halophilic archaebacterium Haloferax volcanii and mutants derived from it into a plasmid capable of expressing the tRNA in these cells. Analysis of tRNAs in vivo show that the initiator tRNA is aminoacylated but is not formylated in H. volcanii. This result provides direct support for the notion that protein synthesis in archaebacteria is initiated with methionine and not with formylmethionine. We have analyzed the effect of two different mutations (CAU-->CUA and CAU-->GAC) in the anticodon sequence of the initiator tRNA on its recognition by the aminoacyl-tRNA synthetases in vivo. The CAU-->CUA mutant was not aminoacylated to any significant extent in vivo, suggesting the importance of the anticodon in aminoacylation of tRNA by methionyl-tRNA synthetase. This mutant initiator tRNA can, however, be aminoacylated in vitro by the Escherichia coli glutaminyl-tRNA synthetase, suggesting that the lack of aminoacylation is due to the absence in H. volcanii of a synthetase, which recognizes the mutant tRNA. Archaebacteria lack glutaminyl-tRNA synthetase and utilize a two-step pathway involving glutamyl-tRNA synthetase and glutamine amidotransferase to generate glutaminyl-tRNA. The lack of aminoacylation of the mutant tRNA indicates that this mutant tRNA is not a substrate for the H. volcanii glutamyl-tRNA synthetase. The CAU-->GAC anticodon mutant is most likely aminoacylated with valine in vivo. Thus, the anticodon plays an important role in the recognition of tRNA by at least two of the halobacterial aminoacyl-tRNA synthetases.  相似文献   

17.
18.
The total primary structure of cytoplasmic initiator tRNA from Tetrahymena thermophila mating type IV, was determined by post labeling techniques. The sequence is pa-G-C-A-G-G-G-U-m1G-G-C-G-A-A-A-D-Gm-G-A-A-U-C-G-C-G-U-Psi-G-G-G-C-U-C-A-U-t6A -A-C-Psi-C-A-A-A-A-m7G-U-m5C-A-G-A-G-G-A-Psi-C-G-m1A-A-A-C-C-U-C-U-C-U-C-U-G-C- U-A-C-C-AOH. The nucleotide residue in the position next to the 5'-end of the anticodon of this tRNA (residue No. 33) is uridine instead of cytidine, which has been found in cytoplasmic initiator tRNAs from multicellular eukaryotic organisms. The sequence of three consecutive G-C base pairs in the anticodon stem common to all other cytoplasmic initiator tRNAs is disrupted in this tRNA; namely, the cytidine at residue 40 in this region is replaced by pseudouridine in Tetrahymena initiator tRNA.  相似文献   

19.
The residues in tRNA that account for its tertiary fold and for its specific aminoacylation are well understood. In contrast, relatively little is known about the residues in tRNA that dictate its ability to transit the different sites of the ribosome. Yet protein synthesis cannot occur unless tRNA properly engages with the ribosome. This study analyzes tRNA gene sequences from 145 fully sequenced bacterial genomes. Grouping the sequences according to the anticodon triplet reveals that many residues in tRNA, including some that are distal to the anticodon loop, are conserved in an anticodon-dependent manner. These residues evade detection when tRNA genes are grouped according to amino acid family. The conserved residues include those at positions 32, 38, and 37 of the anticodon loop, which are already known to influence tRNA translational performance. Therefore, it seems likely that the newly detected anticodon-associated residues also influence tRNA performance on the ribosome. Remarkably, tRNA genes that belong to the same amino acid family and therefore share identical residues at the second and third anticodon positions have diverged, during bacterial evolution, into highly conserved groups that are defined by the residue at the first (wobble) anticodon position. Current ideas about the properties of tRNA and the translation mechanism do not fully account for this phenomenon. The results of the present study provide a foundation for studying the adaptation of individual tRNAs to the translation machinery and for future studies of the translation mechanism.  相似文献   

20.
Escherichia coli tRNA Arg was treated with sodium bisulfite to convert exposed cytosine residues to uracil. This treatment resulted in the loss of amino acid acceptance of the tRNA Arg with pseudo first-order reaction kinetics. The active and inactive molecules were separated after about 60e active and inactive molecules were separated after about 60 percent inactivation and analyzed for U in various positions by finger-printing of the oligonucleotides produced by nucleases. The results show that C to U base transitions in the dihydrouridine loop and in the CCA terminus have no effect on the aminoacylation of this tRNA. Deamination of a cytosine residue at the second position of the anticodon resulted in the loss of amino acid acceptor activity of arginine transfer RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号