首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetylcholinesterase (AChE) from 1-day chicken brain was enriched over 2000-fold by affinity chromatography using N-methylacridinium-Sepharose. This preparation was used to prepare monoclonal antibodies (mAb) directed against AChE, of which two were extensively characterised for further application. Both mAbs bound to the enzyme from the chicken with high affinity (Kd approximately 8 X 10(-10) M) and one mAb, in addition, recognised AChE from quail brain and muscle. Neither mAb cross-reacted with mammalian or fish AChE. Both mAbs recognised AChE in the endplate region of adult chicken skeletal muscle and bound with equal affinity to the three major oligomeric forms found in early ambryonic muscle. One mAb was used to immunopurify chicken brain AChE to homogeneity (over 12000-fold enrichment), with nearly complete recovery of the enzyme and without detectable proteolytic breakdown. The other mAb recognised AChE after immunoblotting and was used to screen crude brain extracts from individual chickens for allelic variations. Evidence is presented to show that two allelic forms occur, represented in SDS-PAGE by a doublet polypeptide of Mr approximately 110,000, this pattern is maintained after deglycosylation of the N-linked oligosaccharides. This variation was found throughout development and in both the brain and the muscle of individuals. We conclude that the gene encoding the catalytic subunit of chicken AChE is polymorphic with either one or two equally active alleles being expressed.  相似文献   

2.
Eleven unique monoclonal IgG antibodies were raised against rabbit brain acetylcholinesterase (AChE, EC 3.1.1.7), purified to electrophoretic homogeneity by a two-step procedure involving immunoaffinity chromatography. The apparent dissociation constants of these antibodies for rabbit AChE ranged from about 10 nM to more than 100 nM (assuming one binding site per catalytic subunit). Species cross-reactivity was investigated with crude brain extracts from rabbit, rat, mouse cat, guinea pig, and human. One antibody bound rabbit AChE exclusively; most bound AChE from three or four species; two bound enzyme from all species tested. Identical, moderate affinity for rat and mouse brain AChE was displayed by two antibodies; two others were able to distinguish between these similar antigens. Nine of the antibodies had lowered affinity for AChE in the presence of 1 M NaCl, but two were salt resistant. Analysis of mutual interferences in AChE binding suggested that certain of the antibodies were competing for nearby epitopes on the AChE surface. One antibody was a potent AChE inhibitor (IC50 = 10(-8) M), blocking up to 90% of the enzyme activity. Most of the antibodies were less able to bind the readily soluble AChE of detergent-free brain extracts than the AChE which required detergent for solubilization. The extreme case, an antibody that was unable to recognize nearly half of the "soluble" AChE, was suspected of lacking affinity for the hydrophilic enzyme form.  相似文献   

3.
Previous study in this laboratory showed that following a sc injection of an organophosphorus compound, diisopropyl fluorophosphate (DFP), into rats the inhibition of 10S molecular forms was considerably more pronounced than that of 4S forms of brain acetylcholinesterase (AChE). This could depend on different accessibility of the two forms or on their different intrinsic sensitivity to the antiChE compound. In the present study the effects of DFP and Paraoxon on 10S and 4S forms were evaluated in vivo, i.e., after systemic administration, and in vitro by adding the organophosphorus compounds to each of the two forms after extraction from brain of untreated rats, solubilization and separation. The in vivo preferential inhibition of 10S forms was confirmed. The 10S/4S ratios for control and DFP-treated rats were 9.05 and 5.01, respectively; these ratios were 8.46 and 3.33 for Paraoxon. On the other hand, in the in vitro experiments there were no significant differences between IC50 values for 10S and 4S forms both in the case of DFP (2.66 and 2.98 uM) and Paraoxon (32.4 and 42.4 nM, respectively). The overall data suggest that the preferential in vivo inhibition of 10S molecular forms with respect to 4S forms depends on their different accessibility probably due to different subcellular localization of the two forms and not on their different intrinsic sensitivity.  相似文献   

4.
Most of mouse diaphragm muscle acetylcholinesterase (AChE) is irreversibly inhibited after a single intraperitoneal injection of a methyl-phosphorothiolate derivative (MPT), an organophosphorus compound which phosphorylates the active site. The muscle recovers its AChE (de novo synthesis) and we studied the time course of reappearance of AChE and its multiple active molecular forms. After inhibition, there is an initial (3 to 15 hr) rapid recovery of total AChE (which evolves from 20-28% to 50-60% of the control values), followed by a slow phase of AChE return. After 3 days, the recovery is still incomplete (reaching 70-80% of control values). Among the main molecular forms present in diaphragm muscle (16 S, 10 S and 4 S, accompanied by minor components), the 16 S and 10 S forms are the most sensitive to MPT treatment. During the rapid initial phase of AChE recovery, the absolute rate of recovery of the 4 S form is faster than for the other forms with a correspondingly much higher relative proportion to total AChE. These observations are consistent with the hypothesized precursor role of the 4 S form. The 16 S form, which is found concentrated in the motor end-plate (MEP)-rich regions and in low amounts in MEP-free regions, is similarly partially recovered in both regions, suggesting that there is 16 S biosynthesis not only in the MEP-rich regions but also in the MEP-free regions.  相似文献   

5.
The major molecular form of acetylcholinesterase (AChE) from chicken brain is a membrane-bound glycoprotein with an apparent sedimentation coefficient of 11.4 S. Analysis of the purified protein by gel filtration, velocity sedimentation, and sodium dodecyl sulfate-gel electrophoresis shows that the solubilized enzyme is a globular tetramer with an apparent Mr = 420,000. This membrane-bound form of AChE is hydrophobic and readily aggregates in the absence of detergent. These aggregates are concentration-dependent, relatively stable in the presence of high salt concentrations, yet readily dissociate upon addition of detergent to the 11.4 S form, indicating that the interactions are hydrophobic. Polyclonal and monoclonal antibodies raised against chicken brain AChE purified by ion exchange chromatography, affinity chromatography, and preparative gel electrophoresis precipitate AChE enzyme activity. However, these antibodies do not cross-react with the enzyme from chicken muscle which preferentially hydrolyses butyrylcholine. Immunoprecipitation of isotopically labeled enzyme molecules from tissue cultured brain cells and analysis by sodium dodecyl sulfate-gel electrophoresis shows that AChE consists of two polypeptide chains with apparent Mr = 105,000 (alpha) and 100,000 (beta) in a 1:1 ratio. Immunoblotting of brain AChE with either the polyclonal or monoclonal antibodies indicates that the alpha and beta chains share antigenic determinants. Furthermore, both polypeptide chains can be labeled with [3H]diisopropyl fluorophosphate, indicating that they each contain a catalytic site. This is the first indication that globular forms of AChE may consist of multiple polypeptide chains.  相似文献   

6.
In adult rat sternocleidomastoid muscle, AChE is concentrated in the region rich in motor end-plates (MEP). All major AChE forms, "16 S," "10 S," and "4 S," are accumulated at high levels, and not only "16 S" AChE. After denervation, muscle AChE decreases; 2 weeks after denervation, low levels (20-40% of control) are reached for all forms. During the following weeks, a slow but steady increase in "10 S" and "16 S" AChE occurs in the denervated muscle. At this stage, all forms are again observed to be highly concentrated in the region containing the old sites of innervation. Thus, in adult rat muscle the structures able to accumulate "16 S," "10 S," and "4 S" AChE in the MEP-rich regions remain several months after denervation. In normal young rat sternocleidomastoid muscle at birth, all AChE forms are already accumulated in the MEP-rich region. After denervation at birth, the denervated muscle loses its ability to keep a high concentration of "4 S," "10 S," and "16 S" AChE in the old MEP-rich region. All AChE forms are still present 1 month after denervation, but they are decreased and diffusedly distributed over the whole length of the muscle. In particular, "16 S" AChE is detected in the same proportion (10-15%) all along the denervated muscle. Thus, the diffuse distribution of AChE, and especially "16 S" AChE, after neonatal denervation, contrasts with the maintained accumulation observed in adult denervated muscle. It seems that denervation of young muscle results in a specific loss of the muscle ability to concentrate high levels of all AChE forms at the old sites of innervation.  相似文献   

7.
The asymmetric (20S) acetylcholinesterase (AChE, EC 3.1.1.7) from 1-day-old chick muscle, purified on a column on which was immobilised a monoclonal antibody (mAb) to chick brain AChE, was used to immunise mice. Eight mAbs against the muscle enzyme were hence isolated and characterised. Five antibodies (4A8, 1C1, 10B7, 7G8, and 8H11) recognise a 110-kilodalton (kDa) subunit with AChE catalytic activity, one antibody (7D11) recognises a 72-kDa subunit with pseudocholinesterase or butyrylcholinesterase (BuChE, EC 3.1.1.8) catalytic activity, and two antibodies (6B6 and 7D7) react with the 58-kDa collagenous tail unit. Those three polypeptides can be recognised together in the 20S enzyme used, which is a hybrid AChE/BuChE oligomer. Antibodies 6B6 and 7D7 are specific for asymmetric AChE. Four of the mAbs recognising the 110-kDa subunit were reactive with it in immunoblots. Sucrose density gradient analysis of the antibody-enzyme complexes showed that the anti-110-kDa subunit mAbs cross-link multiple 20S AChE molecules to form large aggregates. In contrast, there is only a 2-3S increase in the sedimentation constant with the mAbs specific for the 72-kDa or for the 58-kDa subunit, suggesting that those subunits are more inaccessible in the structure to intermolecular cross-linking. The 4A8, 10B7, 7D11, and 7D7 mAbs showed cross-reactivity to the corresponding enzyme from quail muscle; however, none of the eight mAbs reacted with either enzyme type from mammalian muscle or from Torpedo electric organ. All eight antibodies showed immunocytochemical localisation of the AChE form at the neuromuscular junctions of chicken twitch muscles.  相似文献   

8.
Abstract— Specific antibodies were raised in rabbits to acetylcholinesterase (AChE) from bovine caudate nucleus and the‘native’(14S + 18S) and globular (11S) forms of AChE from eel electric tissue. All AChE preparations were purified by affinity chromatography to a specific activity of 100–400 mmol acetylthiocholine hydrolyzed/mg protein/h. Antigenic specificities of the different enzyme forms were studied by immunodiffusion, Immunoelectrophoresis and micro-complement fixation. Minor differences in antigenic determinants were observed between the different molecular forms of electric tissue AChE. In crossover experiments using both eel AChE and bovine caudate AChE antisera there was complete absence of cross reactivity between the mammalian brain AChE and the different molecular forms of the electric tissue enzyme. Brain AChE activity was inhibited up to 50% in the presence of its antiserum.  相似文献   

9.
The embryonic development of total specific activities as well as of molecular forms of acetylcholinesterase (AChE, EC 3.1.1.7) and of butyrylcholinesterase (BChE, EC 3.1.1.8) have been studied in the chick brain. A comparison of the development in different brain parts shows that cholinesterases first develop in diencephalon, then in tectum and telencephalon; cholinesterase development in retina is delayed by about 2-3 days; and the development in rhombencephalon [not studied until embryonic day 6 (E6)] and cerebellum is last. Both enzymes show complex and independent developmental patterns. During the early period (E3-E7) first BChE expresses high specific activities that decline rapidly, but in contrast AChE increases more or less constantly with a short temporal delay. Thereafter the developmental courses approach a late phase (E14-E20), during which AChE reaches very high specific activities and BChE follows at much lower but about parallel levels. By extraction of tissues from brain and retina in high salt plus 1% Triton X-100, we find that both cholinesterases are present in two major molecular forms, AChE sedimenting at 5.9S and 11.6S (corresponding to G2 and G4 globular forms) and BChE at 2.9S and 10.3S (G1 and G4, globular). During development there is a continuous increase of G4 over G2 AChE, the G4 form reaching 80% in brain but only 30% in retina. The proportion of G1 BChE in brain remains almost constant at 55%, but in retina there is a drastic shift from 65% G1 before E5 to 70% G4 form at E7.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Previous studies in this laboratory showed an age-related decline of acetylcholinesterase (AChE) activity in the cerebral cortex of rats. In the present study the age-related differences in enzymatic activity were evaluated in terms of individual molecular forms. Extracts containing total, soluble and membrane-bound AChE were analyzed both by ultracentrifugation in sucrose gradient and by non-denaturing gradient polyacrylamide gel electrophoresis. By ultracentrifugation two molecular forms, namely 10S and 4S (corresponding to tetrameric-G4 and monomeric-G1 forms, respectively) were separated in extracts of total and soluble AChE, while only 10S forms were present in extracts of membrane-bound AChE. Electrophoresis of soluble AChE extracts revealed slowly- and fast-migrating bands, grouped in two clusters of at least three bands each; membrane-bound AChE contained only a single slowly-migrating band. Electrophoresis of the single forms isolated by ultracentrifugation showed that slowly- and fast-migrating bands corresponded to G4 and G1 forms, respectively. Therefore, in soluble AChE no one-to-one relationship between charge- and size-isomers was observed; on the contrary, such relationship has been shown for membrane-bound AChE. This implies that soluble G4 forms and membrane-bound-G4 form are electrophoretically different, being heterogeneous the former and homogeneous the latter. The age-related decline of total AChE, accompanied by a decrease of G4/G1 ratio, depended mainly on a decrease of membrane-bound AChE while soluble AChE and its G4/G1 ratio was unchanged. The qualitative pattern of charge isomers was not modified by aging.  相似文献   

11.
Denervated neonatal rat sternocleidomastoid muscle has decreased levels of total AChE when compared to control muscle. Denervated versus control values of total muscle AChE present a three-phase curve in function of time after denervation. There is a rapid initial fall 0-3 days after denervation, an increase during about 2 weeks, then again a decrease in total AChE. Thus, there is a transitory net accumulation of AChE after the initial fall of activity in denervated developing muscle. Extrasynaptic areas of high AChE activity develop between 1 and 2 weeks after denervation and remain visible up to 1 month after denervation before vanishing. An electron microscope study shows that these accumulations are internal to the muscle fiber, close to a limited number of muscle nuclei and associated to the sarcoplasmic reticulum and nuclear envelope, but not to the T-tubule system. As found in adult rat muscle, the initial fall in AChE affects first the 16 S AChE form, and soon after, the 4 S and 10 S AChE forms. A main difference with adult muscle is the sudden increase and predominance over other forms of 10 S AChE 2 weeks after denervation at birth. Later, the decrease in AChE affects 16 S and 4 S AChE before 10 S AChE. The regions rich in extrasynaptic sites of AChE accumulation possess a very high proportion of 10 S AChE. Thus, the mechanisms of biosynthesis, intracellular transport and/or secretion of AChE may be very different in young, developing muscle compared to adult muscle.  相似文献   

12.
Rat brain acetylcholinesterase (AChE, EC 3.1.1.7) consists of about 80% amphiphilic detergent-soluble (DS-) AChE and 20% hydrophilic salt-soluble (SS-) AChE. DS-AChE contains about 65% tetrameric, 20% dimeric and 10% monomeric, SS-AChE about 40% tetrameric and 60% monomeric forms. N-terminal sequencing of DS- and SS-AChE gave identical N-termini corresponding to the published cDNA sequence of the mature enzyme. The band pattern on SDS-gels is similar to that of AChE from human and bovine brain. SDS-PAGE of hydrophobically labeled DS-AChE revealed the presence of a disulfide bonded hydrophobic membrane anchor of about 20 kDa. Monoclonal antibodies (mAbs) recognizing the anchor-containing subunits of mammalian brain DS-AChE, crossreacted with rat brain DS-AChE but not with SS-AChE. DS- and SS-AChE also reacted with antibodies raised against a peptide comprising the last 10 amino acids of the sequence of bovine brain AChE. Our results led us to conclude that both DS- and SS-AChE from rat brain contain T-type catalytic subunits, and DS-AChE in addition a P-type hydrophobic anchor similar to other mammalian brain DS-AChE.  相似文献   

13.
Multiple Sclerosis (MS) is a chronic autoimmune disorder affecting the central nervous system (CNS) through demyelination and neurodegeneration. Until recently, major therapeutic treatments have relied on agents requiring injection delivery. In September 2010, fingolimod/FTY720 (Gilenya, Novartis) was approved as the first oral treatment for relapsing forms of MS. Fingolimod causes down-modulation of S1P1 receptors on lymphocytes which prevents the invasion of autoaggressive T cells into the CNS. In astrocytes, down-modulation of S1P1 by the drug reduces astrogliosis, a hallmark of MS, thereby allowing restoration of productive astrocyte communication with other neural cells and the blood brain barrier. Animal data further suggest that the drug directly supports the recovery of nerve conduction and remyelination. In human MS, such mechanisms may explain the significant decrease in the number of inflammatory markers on brain magnetic resonance imaging in recent clinical trials, and the reduction of brain atrophy by the drug. Fingolimod binds to 4 of the 5 known S1P receptor subtypes, and significant efforts were made over the past 5 years to develop next generation S1P receptor modulators and determine the minimal receptor selectivity needed for maximal therapeutic efficacy in MS patients. Other approaches considered were competitive antagonists of the S1P1 receptor, inhibitors of the S1P lyase to prevent S1P degradation, and anti-S1P antibodies. Below we discuss the current status of the field, and the functional properties of the most advanced compounds. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.  相似文献   

14.
Multiple molecular forms of acetylcholinesterase (AChE EC 3.1.1.7) from fast and slow muscle of rat were examined by velocity sedimentation. The fast extensor digitorum longus muscle (EDL) hydrolyzed acetylcholine at a rate of 110 mumol/g wet weight/hr and possessed three molecular forms with apparent sedimentation coefficients of 4S, 10S, and 16S which contribute about 50, 35, and 15% of the AChE activity. The slow soleus muscle hydrolyzed acetylcholine at a rate of 55 mumol/g wet weight/hr and has a 4S, 10S, 12S, and 16S form which contribute 22, 18, 34, and 26% of AChE activity, respectively. A single band of AChE activity was observed when a 1M NaCl extract with CsCl (0.38 g/ml) was centrifuged to equilibrium. Peak AChE activity from EDL and SOL extracts were found at 1.29 g/ml. Resedimentation of peak activity from CsCl gradients resulted in all molecular forms previously found in both muscles. Addition of a protease inhibitor phenylmethylsulfonyl chloride did not change the pattern of distribution. The 4S form of both muscles was extracted with low ionic strength buffer while the 10S, 12S, and 16S forms required high ionic strength and detergent for efficient solubilization. All molecular forms of both muscles have an apparent Km of 2 x 10(-4) M, showed substrate inhibition, and were inhibited by BW284C51, a specific inhibitor of AChE. The difference between these muscles in regards to their AChE activity, as well as in the proportional distribution of molecular forms, may be correlated with sites of localization and differences in the contractile activity of these muscles.  相似文献   

15.
Both salt-soluble and detergent-soluble rat brain globular acetylcholinesterases (SS- and DS- AChE EC 3.1.1.7) are amphiphiles, as shown by detergent dependency of enzymatic activity and binding to liposomes. Proteinase K and papain treatment transformed SS-AChE and DS-AChE into forms that, in absence of detergent, no longer aggregated nor bound to liposomes. In contrast, phosphatidylinositol-specific phospholipase C had no effect on these properties. Labeling DS-AChE with 3-(trifluoromethyl)-3-(m-(125I)-iodophenyl) diazirine ([125I]TID) revealed, by polyacrylamide gel electrophoresis under reducing conditions, one single band of 69 kD apparent molecular mass. The same pattern was previously obtained with Bolton and Hunter reagent-labeled enzyme (1). Proteinase K treatment transformed the 11 S [125I]TID labeled AChE into a 4 S form which no longer showed125I-radioactivity and was unable to bind to liposomes. These results are compatible with the existence of a hydrophobic segment present both on salt-soluble and detergent-soluble 11 S AChE as well as on the minor forms 4 S and 7 S. This segment is not linked to the catalytic subunits by disulfide bounds in contrast to the 20 kD non-catalytic subunit described by Inestrosa et al. (2).Abbreviations used AChE acetylcholinesterase - SS-AChE salt-soluble AChE - DS-AChE detergent-soluble AChE - BSA bovine serum albumin - ChE serum (butyryl) cholinesterase - ConA-Sepharose concanavalin A-Sepharose 4B - DMAEBA-Sepharose dimethylaminoethylbenzoic acid-Sepharose 4B - PC-Chol-SA liposomes phosphatidylcholine-cholesterol-stearylamine liposomes - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - 125I-TID 3-(trifluoromethyl)-3-(m-(125I)-iodophenyl) diazirine  相似文献   

16.
Abstract: The study of Arrhenius plots for acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activity from the rat brain and spinal cord revealed that in contrast to AChE, which exhibited biphasic Arrhenius plots with a distinct break (transition temperature) at about 16–18°C, BuChE showed no evidence of discontinuity and a higher activation energy in the physiological range of temperature. The results indicate lack of lipid-protein interaction in the case of BuChE of the CNS tissue. It is inferred that BuChE, in contrast to AChE, is not bound in any significant way to cellular membranes of the CNS tissue.  相似文献   

17.
Acetylcholinesterases (EC 3.1.1.7, AChE) have varying amounts of carbohydrates attached to the core protein. Sequence analysis of the known primary structures gives evidence for several asparagine-linked carbohydrates. From the differences in molecular mass determined on sodium dodecyl sulfate-polyacrylamide gel before and after deglycosylation with N-glycosidase F (EC 3.2.2.18), it is seen that dimeric AChE from red cell membranes is more heavily glycosylated than the tetrameric brain enzyme. Furthermore, dimeric and tetrameric forms of bovine AChE are more heavily glycosylated than the corresponding human enzymes. Monoclonal antibodies 2E6, 1H11, and 2G8 raised against detergent-soluble AChE from electric organs of Torpedo nacline timilei as well as Elec-39 raised against AChE from Electrophorus electricus cross-reacted with AChE from bovine and human brain but not with AChE from erythrocytes. Treatment of the enzyme with N-glycosidase F abolished binding of monoclonal antibodies, suggesting that the epitope, or part of it, consists of N-linked carbohydrates. Analysis of N-acetylglucosamine sugars revealed the presence of N-acetylglucosamine in all forms of cholinesterases investigated, giving evidence for N-linked glycosylation. On the other hand, N-acetylgalactosamine was not found in AChE from human and bovine brain or in butyrylcholinesterase (EC 3.1.1.8) from human serum, indicating that these forms of cholinesterase did not contain O-linked carbohydrates. Despite the notion that within one species, the different forms of AChE arise from one gene by different splicing, our present results show that dimeric erythrocyte and tetrameric brain AChE must undergo different postsynthetic modifications leading to differences in their glycosylation patterns.  相似文献   

18.
We describe an affinity chromatography method in which dimethylaminoethylbenzoic acid-Sepharose 4B is used, making it possible to separate in one step the molecular forms of globular acetylcholinesterase (AChE, EC 3.1.1.7) or butyrylcholinesterase (ChE, EC 3.1.1.8). A crude extract containing these enzymes was deposited onto the chromatography gel, washed, and eluted by a linear gradient of tetramethylammonium chloride (0-0.3 M). With rat brain AChE, two well-separated peaks were eluted in the presence of 1% Triton X-100; the first peak corresponded to 4 S forms and the second to 11 S forms. This separation was very efficient for salt-soluble activity and less efficient for the detergent-soluble AChE. In this case, the 4 S peak represented only 6.5% of total detergent-soluble activity and was cross-contaminated by the 11 S form. Rat serum ChE was efficiently separated into two peaks of 7 S and 11 S. This method could potentially be adapted to separate other multimeric proteins with varying numbers of affinity sites.  相似文献   

19.
Abstract: Several monoclonal antibodies were raised against chicken acetylcholinesterase (AChE; EC 3.1.1.7). Some of these antibodies react with quail AChE but not with AChEs from nonavian vertebrates or invertebrates and not with butyrylcholinesterase. They may be classified in several mutually compatible groups, i.e., that can bind simultaneously to the monomeric form of AChE. Most antibodies recognize a peptidic domain that does not exist in mammalian AChE and that may be digested by trypsin without loss of activity or dissociation of quaternary structure. The only exception is the antibody C-131, which is conformation dependent and preferentially recognizes active AChE. We have set up two-site immunoradiometric assays, using an immobilized capture antibody, C-6 or C-131, and a radiolabeled antibody, 125I-C-54. The C-6/C-54 assay quantifies the totality of inactive and active AChE subunits: It detects 10?3 Ellman unit (~40 pg of protein) and yields a linear response up to at least 25 10?3 Ellman units. An analysis of gradient fractions, using C-6/C-54 and C-131/C-54 assays as well as activity determination, shows that the A12 and G4 forms are exclusively composed of active subunits, whereas inactive molecules cosediment with the active G2 and G1 forms. Both active and inactive G2 and G1 forms are amphiphilic, as indicated by the influence of detergents on their sedimentation coefficients and Stokes radii. In brain, the proportion of inactive forms decreases from 40% at embryonic day 11 (E11) to 20% at birth [day 1 (D1)]. In muscle, we observed no inactive AChE at E11 and a small proportion of inactive G1 at D1. The proportion of inactive forms was much higher in cultured myotubes, obtained from E11 myoblasts. These results show that the proportion of inactive AChE depends on the tissue and varies during development. Thus, the cells seem to control actively the acquisition of AChE activity, as well as the formation of the various oligomeric forms.  相似文献   

20.
Abstract: The hydrophilic, salt-soluble (SS) form of acetylcholinesterase (AChE) from bovine brain caudate nucleus exists mainly as a tetramer sedimenting at 10.3S (∼40%), and a monomer sedimenting at 3.4S (∼60%). The enzyme is N -glycosylated and contains similar HNK-1 carbohydrates as detergent-soluble (DS) AChE. No O-linked carbohydrates could be detected. Amino acid sequencing showed that the N terminus of SS-AChE is identical to that of DS-AChE. In tetrameric SS-AChE, two pairs of disulfide-linked dimers are associated by hydrophobic forces located in the C terminus. Antibodies were raised against a peptide identical to the last 10 amino acid residues of bovine brain DS-AChE. The peptide included the sequence of residues 574–583 (H-Tyr-Ser-Lys-Gln-Asp-Arg-Cys-Ser-Asp-Leu-OH) of the enzyme. The antibodies cross-reacted with tetrameric, but not with monomeric, SS-AChE, showing that in the latter form, the C terminus is truncated. Limited proteolysis of tetrameric SS-AChE at the C terminus led to the formation of an enzymatically active monomer, which did not react with anti-C-terminal antibody. Although the DS form of AChE contains a structural subunit that serves as membrane anchor, no anchor was detected in SS-AChE. Enzyme antigen immunoassays showed that SS-AChE reacted with all monoclonal antibodies directed against the catalytic subunit of DS-AChE, but not with monoclonal antibodies targeting the membrane-anchored subunits. From our results, we conclude that SS-AChE utilizes the same alternative splicing pattern as DS-AChE, leading to tetrameric SS-AChE devoid of the membrane anchor. The active monomer of SS-AChE is most likely derived from tetrameric forms by limited postsynthetic proteolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号