共查询到20条相似文献,搜索用时 15 毫秒
1.
M P Ivanova V Iu Mel'nikov 《Zhurnal vysshe? nervno? deiatelnosti imeni I P Pavlova》1988,38(3):427-433
In summation and averaging of sections of the EEG of sensorimotor cortex of both cerebral hemispheres recorded during human static effort of definite duration, a complex of negative-positive oscillations was observed. These oscillations appear before the beginning of the effort, accompany its execution and finishing and are also recorded after cessation of muscles activity. Before the beginning, the potential of readiness is formed. The execution of the effort is accompanied by a slow negative wave which in some people may be broken by a pronounced positivity. Further a final potential appears; its fast positive oscillation is formed before the end of the effort, and a slow negative wave in which it turns, appears only after muscles relaxation. 相似文献
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
The paper sought to determine the exercise intensity where the slow component of oxygen uptake (Vo(2)) first appears in decremental work load exercise (DLE). Incremental work load exercise (ILE) was performed with an increment rate of 15 watts (W) per minute. In DLE, power outputs were decreased by 15 W per minute, from 120 (DLE(120)), 160 (DLE(160)), 200 (DLE(200)) and 240 (DLE(240)) W, respectively. The slopes of Vo(2) against the power output were obtained in the lower section from 0 to 50 W in all DLEs, and in the upper section from 80 to 120 W in DLE(160) and from 100 to 150 W in DLE(200) and DLE(240). The power output at exhaustion in ILE was 274 +/- 20 W. The power output at the ventilatory threshold (VT) obtained in ILE was 167 +/- 22 W. The initial power output in DLE(160) was near the power output at VT. The slopes obtained in the upper sections were 11.4 +/- 0.9 ml x min(-1) x W(-1)1 in DLE(160), 12.8 +/- 0.8 ml x min(-1) x W(-1) in DLE(200), and 14.8 +/- 1.1 ml x min(-1) x W(-1) in DLE(240). The slope obtained in DLE(120) was 10.9 +/- 0.6 ml x min(-1). There were no differences in slope between the upper and lower sections in DLE(160) but there were significant differences in slopes between the upper and lower sections in DLE(200) and DLE(240). Thus, the slow component, which could be observed as a steeper slope in DLE, began to increase when the initial power output in DLE was near to VT. 相似文献
13.
E Klotzbücher 《European journal of applied physiology and occupational physiology》1975,34(4):311-322
Mean duration of heart period (DHP chi) and its standard deviation (SD), indicating heart arrhythmia and significantly correlating with DHP chi, decreased with stepwise increase of dynamic muscular work on a bicycle ergometer and static muscular work of the right upper arm flexor beyond the limit of permanent performance. This correlation, however, can be understood globally only, since the decrease of DHP chi and SD was not always continuous, but frequently changing, with alterations of increase and decrease from step to step of dynamic work load and from minute to minute of static muscular strain. This concerned particularly SD. A continuous decrease of DHP chi in dynamic muscular work was obtained only by load differences of 40 W, not by differences of 10 or 20 W. A more continuous decrease of SD was also noted during greater load-differences. The significant correlation of DHP chi and SD was lost at a load-difference of 10 W on the 60 W-step and at a load-difference of 40 W on the 180 W-step. Great loads caused at the same load-step less frequent variations of DHP chi, not of SD, than little loads. If no preceding work took place, a contary reaction of DHP chi and SD was noted often at the first load-step. Static work with greater holding force caused a more continuous decrease of DHP chi, in a lower degree of SD, than static work with lower holding force. DHP chi decreased mainly in the first minute of strain. The adjustment of mean heart rate and heart arrhythmia on a level corresponding to increase of load is influenced essentially by the difference of muscular strain appearing between two periods of work load or periods of holding. The regulation of the mean duration of heart period and of heart arrhythmia does not necessarily depend on each other. 相似文献
14.
15.
Combinations of various types of dynamics of integrated synchronously recorded bioelectrical activity of the gastrocnemius (lateral and medial) and soleus muscles were analyzed in healthy test subjects and patients with occlusive diseases of vessels of the lower limbs (obliterating endarteritis and atherosclerosis), who performed static work “to capacity”, maintaining a load of 50% of the maximum force of the muscles (plantar flexors of the sole of the foot). The frequency analysis of the elicited types of changes in the electromyogram integrals and their combinations testifies to general regularities in the functional organization of voluntary organization of an effort when fatigue develops in test subjects of two groups, and some features in the conjugate activity of the muscles ascribed to the group of the so-called “principal synergists,” recorded only in the patient group. 相似文献
16.
17.
18.
Endurance time in static work during partial curarization 总被引:1,自引:0,他引:1
19.
The effect of measurement time when evaluating static muscle endurance during sustained static maximal gripping 总被引:1,自引:0,他引:1
Yamaji S Demura S Nagasawa Y Nakada M Kitabayashi T 《Journal of PHYSIOLOGICAL ANTHROPOLOGY and Applied Human Science》2002,21(3):151-158
The purpose of this study was to examine the useful measurement time when evaluating static muscle endurance by comparing various parameters during sustained static gripping for 1, 3 and 6 min. Fifteen males (mean +/- SD age 20.8 +/- 1.3 yr, height 172.9 +/- 4.6 cm, body mass 67.7 +/- 5.7 kg) and fifteen females [mean +/- SD age 20.2 +/- 0.9 yr, height 158.5 +/- 3.2 cm, body mass 55.9 +/- 4.6 kg] volunteered to participate in this study. The subjects performed the sustained static maximal grip test with a sagittal and horizontal arm position for 1, 3 and 6 min on different days. Eleven force-time parameters were selected to evaluate static muscle endurance. The trial-to-trial reliability of each measurement time of sustained static maximal gripping was very high (rxy = 0.887-0.981 (1 min), 0.912-0.993 (3 min), 0.901-0.965 (6 min)). The errors of exertion values between trials were very small (below 10%). A significant correlation was found in the following parameters: the final strength and the exponential function between 1 min and 3 min, all parameters except for the time required to reach 80% of maximal grip, the regression coefficient at post-inflection between 3 min and 6 min, and the decreasing rate between all measurement times (1 min, 3 min, and 6 min). Significant differences between the measurement times were found in all parameters except for the time to 60, 70, and 80% force decreases, and the regression coefficient of pre-inflection. There was a tendency that the longer the measurement time, the larger the decreasing force. It is suggested that for the 6 min measurement, the subjects unconsciously restrained the maximal gripping force, influenced by a psychological factor as the pain became greater. The 1 min measurement may evaluate only the remarkable decreasing phase of the decreasing force, and not evaluate the phase of an almost steady state. 相似文献
20.
We describe experimental apparatus, methodology and mathematical algorithms to measure diffusion and partition for typical small ionic solutes and inulin (a medium size solute) in statically loaded cartilage. The partition coefficient based on tissue water (K(H(2)O)) of Na(+) increased from 1.8 to 4.5 and for SO(4)(-2) decreased from 0.5 to 0.1, when the applied pressure was raised from zero to 22 atm K(H(2)O) of inulin decreased from 0.3 to 0.05, for an increase in pressure from zero to 11 atm. Our theoretical interpretation of the results is that the partition coefficient can be expressed as a function of fixed charge density (FCD) for both loaded and unloaded cartilage. The partition coefficient shows good agreement with the ideal Gibbs-Donnan equilibrium, particularly when FCD is based on extrafibrillar water (EFW). The diffusion coefficients, D also decreased with an increase in applied pressure; raising the pressure from 0 to 22 atm resulted in the following changes in the values of D: for Na(+) from 2.86 x 10(-6) to 1.51 x 10(-6) cm(2)/s, for SO(4)(-2) from 1.58 x 10(-6) to 7.5 x 10(-7) cm(2)/s, for leucine from 1.69 x 10(-6) to 8.30 x 10(-7) cm(2)/s and for inulin from 1.80 x 10(-7) to 3.30 x 10(-8) cm(2)/s. For the three small solutes (two charged and one neutral) the diffusion coefficient D is highly correlated with the fraction of fluid volume in the tissue. These experimental results show good agreement with the simple model of Mackie and Meares: hence solute charge does not affect the diffusion of small solutes under load. For inulin D & K show some agreement with a modified Ogston model based on two major components, viz., glycosaminoglycans (GAG) and core protein. We conclude that the changes in the partition and diffusion coefficients of small and medium size solutes in statically loaded cartilage can be interpreted as being due to the reduction in hydration and increase in FCD. The change in the latter affects the partition of small ionic solutes and the partition and diffusion of larger molecules. Our results throw light on the ionic environment of chondrocytes in loaded cartilage as well as on the transport of solutes through the matrix. 相似文献