首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The "4D Biology Workshop for Health and Disease", held on 16-17th of March 2010 in Brussels, aimed at finding the best organising principles for large-scale proteomics, interactomics and structural genomics/biology initiatives, and setting the vision for future high-throughput research and large-scale data gathering in biological and medical science. Major conclusions of the workshop include the following. (i) Development of new technologies and approaches to data analysis is crucial. Biophysical methods should be developed that span a broad range of time/spatial resolution and characterise structures and kinetics of interactions. Mathematics, physics, computational and engineering tools need to be used more in biology and new tools need to be developed. (ii) Database efforts need to focus on improved definitions of ontologies and standards so that system-scale data and associated metadata can be understood and shared efficiently. (iii) Research infrastructures should play a key role in fostering multidisciplinary research, maximising knowledge exchange between disciplines and facilitating access to diverse technologies. (iv) Understanding disease on a molecular level is crucial. System approaches may represent a new paradigm in the search for biomarkers and new targets in human disease. (v) Appropriate education and training should be provided to help efficient exchange of knowledge between theoreticians, experimental biologists and clinicians. These conclusions provide a strong basis for creating major possibilities in advancing research and clinical applications towards personalised medicine.  相似文献   

2.
Bioinformatics is central to biology education in the 21st century. With the generation of terabytes of data per day, the application of computer-based tools to stored and distributed data is fundamentally changing research and its application to problems in medicine, agriculture, conservation and forensics. In light of this 'information revolution,' undergraduate biology curricula must be redesigned to prepare the next generation of informed citizens as well as those who will pursue careers in the life sciences. The BEDROCK initiative (Bioinformatics Education Dissemination: Reaching Out, Connecting and Knitting together) has fostered an international community of bioinformatics educators. The initiative's goals are to: (i) Identify and support faculty who can take leadership roles in bioinformatics education; (ii) Highlight and distribute innovative approaches to incorporating evolutionary bioinformatics data and techniques throughout undergraduate education; (iii) Establish mechanisms for the broad dissemination of bioinformatics resource materials and teaching models; (iv) Emphasize phylogenetic thinking and problem solving; and (v) Develop and publish new software tools to help students develop and test evolutionary hypotheses. Since 2002, BEDROCK has offered more than 50 faculty workshops around the world, published many resources and supported an environment for developing and sharing bioinformatics education approaches. The BEDROCK initiative builds on the established pedagogical philosophy and academic community of the BioQUEST Curriculum Consortium to assemble the diverse intellectual and human resources required to sustain an international reform effort in undergraduate bioinformatics education.  相似文献   

3.
Microbial ecology to manage processes in environmental biotechnology   总被引:1,自引:0,他引:1  
Microbial ecology and environmental biotechnology are inherently tied to each other. The concepts and tools of microbial ecology are the basis for managing processes in environmental biotechnology; and these processes provide interesting ecosystems to advance the concepts and tools of microbial ecology. Revolutionary advancements in molecular tools to understand the structure and function of microbial communities are bolstering the power of microbial ecology. A push from advances in modern materials along with a pull from a societal need to become more sustainable is enabling environmental biotechnology to create novel processes. How do these two fields work together? Five principles illuminate the way: (i) aim for big benefits; (ii) develop and apply more powerful tools to understand microbial communities; (iii) follow the electrons; (iv) retain slow-growing biomass; and (v) integrate, integrate, integrate.  相似文献   

4.
Tyzzer discovered the genus Cryptosporidium a century ago, and for almost 70 years cryptosporidiosis was regarded as an infrequent and insignificant infection that occurred in the intestines of vertebrates and caused little or no disease. Its association with gastrointestinal illness in humans and animals was recognized only in the early 1980s. Over the next 25 years, information was generated on the disease's epidemiology, biology, cultivation, taxonomy and development of molecular tools. Milestones include: (i) recognition in 1980 of cryptosporidiosis as an acute enteric disease; (ii) its emergence as a chronic opportunistic infection that complicates AIDS; (iii) acknowledgement of impact on the water industry once it was shown to be waterborne; and (iv) study of Cryptosporidium genomics.  相似文献   

5.
Male intrasexual competition should favour increased male physical prowess. This should in turn result in greater aerobic capacity in males than in females (i.e. sexual dimorphism) and a correlation between sexual dimorphism in aerobic capacity and the strength of sexual selection among species. However, physiological scaling laws predict that aerobic capacity should be lower per unit body mass in larger than in smaller animals, potentially reducing or reversing the sex difference and its association with measures of sexual selection. We used measures of haematocrit and red blood cell (RBC) counts from 45 species of primates to test four predictions related to sexual selection and body mass: (i) on average, males should have higher aerobic capacity than females, (ii) aerobic capacity should be higher in adult than juvenile males, (iii) aerobic capacity should increase with increasing sexual selection, but also that (iv) measures of aerobic capacity should co‐vary negatively with body mass. For the first two predictions, we used a phylogenetic paired t‐test developed for this study. We found support for predictions (i) and (ii). For prediction (iii), however, we found a negative correlation between the degree of sexual selection and aerobic capacity, which was opposite to our prediction. Prediction (iv) was generally supported. We also investigated whether substrate use, basal metabolic rate and agility influenced physiological measures of oxygen transport, but we found only weak evidence for a correlation between RBC count and agility.  相似文献   

6.
7.
Evolution and molecular mechanisms of adaptive developmental plasticity   总被引:1,自引:0,他引:1  
Aside from its selective role in filtering inter-individual variation during evolution by natural selection, the environment also plays an instructive role in producing variation during development. External environmental cues can influence developmental rates and/or trajectories and lead to the production of distinct phenotypes from the same genotype. This can result in a better match between adult phenotype and selective environment and thus represents a potential solution to problems posed by environmental fluctuation. The phenomenon is called adaptive developmental plasticity. The study of developmental plasticity integrates different disciplines (notably ecology and developmental biology) and analyses at all levels of biological organization, from the molecular regulation of changes in organismal development to variation in phenotypes and fitness in natural populations. Here, we focus on recent advances and examples from morphological traits in animals to provide a broad overview covering (i) the evolution of developmental plasticity, as well as its relevance to adaptive evolution, (ii) the ecological significance of alternative environmentally induced phenotypes, and the way the external environment can affect development to produce them, (iii) the molecular mechanisms underlying developmental plasticity, with emphasis on the contribution of genetic, physiological and epigenetic factors, and (iv) current challenges and trends, including the relevance of the environmental sensitivity of development to studies in ecological developmental biology, biomedicine and conservation biology.  相似文献   

8.
Precision genetic engineering based on stable chromosomal insertion of exogenous DNA in the genomes of large mammals is immensely important for the development of improved biomedical models, pharmaceutical research and an accelerated breeding progress. Precision genetic engineering requires (i) a known locus of genomic integration, (ii) a defined status of foreign DNA, (iii) that transgene expression is unaffected by neighbouring chromosomal sequences, (iv) endogenous genes are not mutated and (v) no unwanted DNA sequences are present. Recently, advanced molecular techniques exploiting exogenous enzymes have opened the possibilities for more sophisticated genetic engineering. Here, we critically review current developments of enzyme-catalysed approaches for targeted transgenesis in large mammals.  相似文献   

9.
10.
11.
MOTIVATION: Genomic research laboratories need adequate infrastructure to support management of their data production and research workflow. But what makes infrastructure adequate? A lack of appropriate criteria makes any decision on buying or developing a system difficult. Here, we report on the decision process for the case of a molecular genetics group establishing a microarray laboratory. RESULTS: Five typical requirements for experimental genomics database systems were identified: (i) evolution ability to keep up with the fast developing genomics field; (ii) a suitable data model to deal with local diversity; (iii) suitable storage of data files in the system; (iv) easy exchange with other software; and (v) low maintenance costs. The computer scientists and the researchers of the local microarray laboratory considered alternative solutions for these five requirements and chose the following options: (i) use of automatic code generation; (ii) a customized data model based on standards; (iii) storage of datasets as black boxes instead of decomposing them in database tables; (iv) loosely linking to other programs for improved flexibility; and (v) a low-maintenance web-based user interface. Our team evaluated existing microarray databases and then decided to build a new system, Molecular Genetics Information System (MOLGENIS), implemented using code generation in a period of three months. This case can provide valuable insights and lessons to both software developers and a user community embarking on large-scale genomic projects. AVAILABILITY: http://www.molgenis.nl  相似文献   

12.
Molecular biology has provided insights into the taxonomy and epidemiology of Cryptosporidium and Giardia, which are major causes of protozoal diarrhoea in humans worldwide. For both genera, previously unrecognized differences in disease, symptomatology, zoonotic potential, risk factors and environmental contamination have been identified using molecular tools that are appropriate for species, genotype and subtype analysis. In this article, to improve understanding of the epidemiology of cryptosporidiosis and giardiasis, we consider specific requirements for the development of more-effective molecular identification and genotyping systems that should be applicable to both clinical and environmental samples.  相似文献   

13.
Through the analysis of 57 bacterial genomes we have detected repetitive extragenic palindromic DNA sequences (REPs) in 11 species. For a sequence to be considered as REP, the following criteria should be met: (i) It should be extragenic, (ii) palindromic, (iii) of a length between 21 and 65 bases and (iv) should constitute more than 0.5% of the total extragenic space. Species-specific REPs have been found in human pathogens such as Escherichia coli, Salmonella enterica, Neisseria meningitidis, Mycobacterium tuberculosis, Rickettsia conorii and Pseudomonas aeruginosa, the plant pathogen Agrobacterium tumefaciens and the soil bacteria Deinococcus radiodurans, Pseudomonas putida and Sinorhizobium meliloti.  相似文献   

14.
During the past two decades scientists, regulatory agencies and the European Commission have acknowledged pharmaceuticals to be an emerging environmental problem. In parallel, a regulatory framework for environmental risk assessment (ERA) of pharmaceutical products has been developed. Since the regulatory guidelines came into force the German Federal Agency (UBA) has been evaluating ERAs for human and veterinary pharmaceutical products before they are marketed. The results show that approximately 10% of pharmaceutical products are of note regarding their potential environmental risk. For human medicinal products, hormones, antibiotics, analgesics, antidepressants and antineoplastics indicated an environmental risk. For veterinary products, hormones, antibiotics and parasiticides were most often discussed as being environmentally relevant. These results are in good correlation with the results within the open scientific literature of prioritization approaches for pharmaceuticals in the environment. UBA results revealed that prospective approaches, such as ERA of pharmaceuticals, play an important role in minimizing problems caused by pharmaceuticals in the environment. However, the regulatory ERA framework could be improved by (i) inclusion of the environment in the risk–benefit analysis for human pharmaceuticals, (ii) improvement of risk management options, (iii) generation of data on existing pharmaceuticals, and (iv) improving the availability of ERA data. In addition, more general and integrative steps of regulation, legislation and research have been developed and are presented in this article. In order to minimize the quantity of pharmaceuticals in the environment these should aim to (i) improve the existing legislation for pharmaceuticals, (ii) prioritize pharmaceuticals in the environment and (iii) improve the availability and collection of pharmaceutical data.  相似文献   

15.
16.
The Protein Data Bank Japan (PDBj) curates, edits and distributes protein structural data as a member of the worldwide Protein Data Bank (wwPDB) and currently processes approximately 25-30% of all deposited data in the world. Structural information is enhanced by the addition of biological and biochemical functional data as well as experimental details extracted from the literature and other databases. Several applications have been developed at PDBj for structural biology and biomedical studies: (i) a Java-based molecular graphics viewer, jV; (ii) display of electron density maps for the evaluation of structure quality; (iii) an extensive database of molecular surfaces for functional sites, eF-site, as well as a search service for similar molecular surfaces, eF-seek; (iv) identification of sequence and structural neighbors; (v) a graphical user interface to all known protein folds with links to the above applications, Protein Globe. Recent examples are shown that highlight the utility of these tools in recognizing remote homologies between pairs of protein structures and in assigning putative biochemical functions to newly determined targets from structural genomics projects.  相似文献   

17.
合成生物学是一个基于生物学和工程学原理的科学领域,其目的是重新设计和重组微生物,以优化或创建具有增强功能的新生物系统。该领域利用分子工具、系统生物学和遗传框架的重编程,从而构建合成途径以获得具有替代功能的微生物。传统上,合成生物学方法通常旨在开发具有成本效益的微生物细胞工厂进而从可再生资源中生产化学物质。然而,近年来合成生物学技术开始在环境保护中发挥着更直接的作用。本综述介绍了基因工程中的合成生物学工具,讨论了基于基因工程的微生物修复策略,强调了合成生物学技术可以通过响应特定污染物进行生物修复来保护环境。其中,规律间隔成簇短回文重复序列(Clustered Regularly Interspersed Short Palindromic Repeats, CRISPR)技术在基因工程细菌和古细菌的生物修复中得到了广泛应用,生物修复领域也出现了很多新的先进技术,包括生物膜工程、人工微生物群落的构建、基因驱动、酶和蛋白质工程等。有了这些新的技术和工具,生物修复将成为当今最好和最有效的污染物去除方式之一。  相似文献   

18.
Microbial engineering requires accurate information about cellular metabolic networks and a set of molecular tools that can be predictably applied to the efficient redesign of such networks. Recent advances in the field of metabolic engineering and synthetic biology, particularly the development of molecular tools for synthetic regulation in the static and dynamic control of gene expression, have increased our ability to efficiently balance the expression of genes in various biological systems. It would accelerate the creation of synthetic pathways and genetic programs capable of adapting to environmental changes in real time to perform the programmed cellular behavior. In this paper, we review current developments in the field of synthetic regulatory tools for static and dynamic control of microbial gene expression.  相似文献   

19.
Using biological machinery to make new, functional molecules is an exciting area in chemical biology. Complex molecules containing both 'natural' and 'unnatural' components are made by processes ranging from enzymatic catalysis to the combination of molecular biology with chemical tools. Here, we discuss applying this approach to the next level of biological complexity -- building synthetic, functional biotic systems by manipulating biological machinery responsible for development of multicellular organisms. We describe recent advances enabling this approach, including first, recent developmental biology progress unraveling the pathways and molecules involved in development and pattern formation; second, emergence of microfluidic tools for delivering stimuli to a developing organism with exceptional control in space and time; third, the development of molecular and synthetic biology toolsets for redesigning or de novo engineering of signaling networks; and fourth, biological systems that are especially amendable to this approach.  相似文献   

20.
4-Chloromethylbiphenyl (4CMB), benzyl chloride (BC) and 4-hydroxymethyl-biphenyl (4HMB) were tested for biological activity in the following assays: (i) the Salmonella/microsome assay; (ii) a bacterial 'fluctuation' assays; (iii) a DNA repair assay in Hela cells, and (iv) a mouse lymphoma mutation assay. 4CMB was active in assays (i), (ii) and (iii) but not in (iv); BC was active in assays (i), (ii), (iii) but not in (iv) while 4HMB was inactive in all assays. Where biological activity was seen this did not require addition of a liver S9 preparation. 4CMB was more active than BC in all the test systems in which a positive response was obtained. The implication of these results for a test battery approach to in vitro testing is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号