首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paracoccus denitrificans produces two primary enzymes for the amine oxidation, tryptophan-tryptophylquinone (TTQ)-containing methylamine dehydrogenase (MADH) and quinohemoprotein amine dehydrogenase (QH-AmDH). QH-AmDH has a novel cofactor, cysteine tryptophylquinone (CTQ) and two hemes c. In this work, the redox potentials of three redox centers in QH-AmDH were determined by a mediator-assisted continuous-flow column electrolytic spectroelectrochemical technique. Kinetics of the electron transfer from QH-AmDH to three kinds of metalloproteins, amicyanin, cytochrome c(550), and horse heart cytochrome c were examined on the basis of the theory of mediated-bioelectrocatalysis. All these metalloproteins work as a good electron acceptor of QH-AmDH and donate the electron to the terminal oxidase of P. denitrificans, which was revealed by reconstitution of the respiratory chain. These properties are in marked contrast with those of MADH, which shows high specificity to amicyanin. These electron transfer kinetics are discussed in terms of thermodynamics and structural property.  相似文献   

2.
The type II quinohemoprotein alcohol dehydrogenase of Pseudomonas putida is a periplasmic enzyme that oxidizes substrate alcohols to the aldehyde and transfers electrons first to pyrroloquinoline quinone (PQQ) and then to an internal heme group. The 1.9 A resolution crystal structure reveals that the enzyme contains a large N-terminal eight-stranded beta propeller domain (approximately 60 kDa) similar to methanol dehydrogenase and a small C-terminal c-type cytochrome domain (approximately 10 kDa) similar to the cytochrome subunit of p-cresol methylhydoxylase. The PQQ is bound near the axis of the propeller domain about 14 A from the heme. A molecule of acetone, the product of the oxidation of isopropanol present during crystallization, appears to be bound in the active site cavity.  相似文献   

3.
M Choi  S Shin  VL Davidson 《Biochemistry》2012,51(35):6942-6949
Respiration, photosynthesis, and metabolism require the transfer of electrons through and between proteins over relatively long distances. It is critical that this electron transfer (ET) occur with specificity to avoid cellular damage, and at a rate that is sufficient to support the biological activity. A multistep hole hopping mechanism could, in principle, enhance the efficiency of long-range ET through proteins as it does in organic semiconductors. To explore this possibility, two different ET reactions that occur over the same distance within the protein complex of the diheme enzyme MauG and different forms of methylamine dehydrogenase (MADH) were subjected to kinetic and thermodynamic analysis. An ET mechanism of single-step direct electron tunneling from diferrous MauG to the quinone form of MADH is consistent with the data. In contrast, the biosynthetic ET from preMADH, which contains incompletely synthesized tryptophan tryptophylquinone, to the bis-Fe(IV) form of MauG is best described by a two-step hole hopping mechanism. Experimentally determined ET distances matched the distances determined from the crystal structure that would be expected for single-step tunneling and multistep hopping. Experimentally determined relative values of electronic coupling (H(AB)) for the two reactions correlated well with the relative H(AB) values predicted from computational analysis of the structure. The rate of the hopping-mediated ET reaction is also 10-fold greater than that of the single-step tunneling reaction despite a smaller overall driving force for the hopping-mediated ET reaction. These data provide insight into how the intervening protein matrix and redox potentials of the electron donor and acceptor determine whether the ET reaction proceeds via single-step tunneling or multistep hopping.  相似文献   

4.
Cofactors made from constitutive amino acids in proteins are now known to be relatively common. A number of these involve the generation of quinone cofactors, such as topaquinone in the copper-containing amine oxidases, and lysine tyrosylquinone in lysyl oxidase. The biogenesis of the quinone cofactor tryptophan tryptophylquinone (TTQ) in methylamine dehydrogenase (MADH) involves the post-translational modification of two constitutive Trp residues (Trp(beta)(57) and Trp(beta)(108) in Paracoccus denitrificans MADH). The modifications for generating TTQ are the addition of two oxygens to the indole ring of Trp(beta)(57) and the formation of a covalent cross-link between Cepsilon3 of Trp(beta)(57) and Cdelta1 of Trp(beta)(108). The order in which these events occur is unknown. To investigate the role Trp(beta)(108) may play in this process, this residue was mutated to both a His (betaW108H) and a Cys (betaW108C) residue. For each mutant, the majority of the protein that was isolated was inactive and exhibited weaker subunit-subunit interactions than native MADH. Analysis by mass spectrometry suggested that the inactive protein was a biosynthetic intermediate with only one oxygen atom incorporated into Trp(beta)(57) and no cross-link with residue beta108. However, in each mutant preparation, a small percentage of the mutant enzyme was active and appears to possess a functional tryptophylquinone cofactor. In the case of betaW108C, this cofactor may be identical to cysteine tryptophylquinone, recently described in the bacterial quinohemoprotein amine dehydrogenase. In betaW108H, the active cofactor is presumably a histidine tryptophylquinone, which has not been previously described, and represents the synthesis of a novel quinone protein cofactor.  相似文献   

5.
Quinoprotein alcohol dehydrogenases are redox enzymes that participate in distinctive catabolic pathways that enable bacteria to grow on various alcohols as the sole source of carbon and energy. The x-ray structure of the quinohemoprotein alcohol dehydrogenase from Comamonas testosteroni has been determined at 1.44 A resolution. It comprises two domains. The N-terminal domain has a beta-propeller fold and binds one pyrroloquinoline quinone cofactor and one calcium ion in the active site. A tetrahydrofuran-2-carboxylic acid molecule is present in the substrate-binding cleft. The position of this oxidation product provides valuable information on the amino acid residues involved in the reaction mechanism and their function. The C-terminal domain is an alpha-helical type I cytochrome c with His(608) and Met(647) as heme-iron ligands. This is the first reported structure of an electron transfer system between a quinoprotein alcohol dehydrogenase and cytochrome c. The shortest distance between pyrroloquinoline quinone and heme c is 12.9 A, one of the longest physiological edge-to-edge distances yet determined between two redox centers. A highly unusual disulfide bond between two adjacent cysteines bridges the redox centers. It appears essential for electron transfer. A water channel delineates a possible pathway for proton transfer from the active site to the solvent.  相似文献   

6.
The biosynthesis of methylamine dehydrogenase (MADH) requires formation of six intrasubunit disulfide bonds, incorporation of two oxygens into residue betaTrp57 and covalent cross-linking of betaTrp57 to betaTrp108 to form the protein-derived cofactor tryptophan tryptophylquinone (TTQ). Residues betaAsp76 and betaAsp32 are located in close proximity to the quinone oxygens of TTQ in the enzyme active site. These residues are structurally conserved in quinohemoprotein amine dehydrogenase, which possesses a cysteine tryptophylquinone cofactor. Relatively conservative betaD76N and betaD32N mutations resulted in very low levels of MADH expression. Analysis of the isolated proteins by mass spectrometry revealed that each mutation affected TTQ biogenesis. betaD76N MADH possessed the six disulfides but had no oxygen incorporated into betaTrp57 and was completely inactive. The betaD32N MADH preparation contained a major species with six disulfides but no oxygen incorporated into betaTrp57 and a minor species with both oxygens incorporated, which was active. The steady-state kinetic parameters for the betaD32N mutant were significantly altered by the mutation and exhibited a 1000-fold increase in the Km value for methylamine. These results have allowed us to more clearly define the sequence of events that lead to TTQ biogenesis and to define novel roles for aspartate residues in the biogenesis of a protein-derived cofactor.  相似文献   

7.
Studies on those enzymes and electron-transfer proteins involved in the catabolism of 'C1' substrates in methylotrophic bacteria have provided a wealth of information concerning the transfer of electrons and hydrogen by quantum tunnelling mechanisms. With regard to H-transfer, studies with MADH have provided the first example of ground-state tunnelling of hydrogen driven by the natural, thermally activated, low-frequency motions of the enzyme molecule. Subsequent studies with related enzymes (e.g. TMADH and bacterial sarcosine oxidase) and with thermophilic alcohol dehydrogenase suggest that vibrationally assisted tunnelling of hydrogen may be more widespread than originally assumed. Our studies of electron transfer in TMADH and ETF have established a role for large-scale protein dynamics in interprotein electron transfer, and have made a contribution to the ongoing debate concerning the mechanism of amine oxidation by enzymes. Moreover, our work has identified a hitherto unknown mechanism for the control of electron density in reduced flavin that influences the rate of electron transfer between redox centres within a protein molecule. Despite this progress, however, many questions still remain to be resolved. With the development of more sophisticated experimental techniques (and also continued financial support from the funding agencies!), the mechanistic uncertainties surrounding the quantum mechanical transfer of electrons and hydrogen in biological molecules should be transmogrified into the certainties one more readily acquaints with the classical world.  相似文献   

8.
PQQ and quinoprotein enzymes in microbial oxidations   总被引:1,自引:0,他引:1  
Abstract Pyrroloquinoline quinone (PQQ) is found in a wide range of microorganisms, and several bacteria even excrete this compound into their culture medium when grown on alcohols. The existence of different classes of quinoprotein (PQQ-containing) enzymes is now well established (alcohol dehydrogenases, aldose (glucose) dehydrogenases, amine dehydrogenases and amine oxidases) while several other enzymes are suspected to be quinoproteins. In addition, many bacteria produce a quinoprotein apoenzyme, e.g., Escherichia coli and Pseudomonas testosteroni , producing glucose and ethanol dehydrogenase apoenzyme, respectively. It is unclear why these bacteria do not produce the holoenzyme form, but the apoenzymes have the ability to become functional, as was shown when the organisms were provided with PQQ. With this approach it could be demonstrated that E. coli has a non-phosphorylative route of glucose dissimilation via gluconate. Also, results with mixed cultures indicate that PQQ is a growth factor for certain bacteria under certain conditions. Despite the relatively high redox potential of the PQQ/PQQH2 couple, quinoproteins transfer electrons to a variety of natural electron acceptors. Depending on the type of quinoprotein enzyme, the following components of the respiratory chain appear to be active: cytochrome c (sometimes with a copper protein as an intermediate), cytochrome b , and NADH dehydrogenase. PQQ is not restricted to a particular group of organisms, and reactions catalysed by quinoproteins can also be performed by NAD(P)-dependent or flavoprotein enzymes. Thus, these observations do not provide arguments for the view that quinoproteins have a unique role in microbial oxidations. Further comparative studies on oxidoreductases are necessary to reveal the special features of this novel group of enzymes.  相似文献   

9.
Cytochrome bc1 complexes of microorganisms.   总被引:17,自引:2,他引:15       下载免费PDF全文
The cytochrome bc1 complex is the most widely occurring electron transfer complex capable of energy transduction. Cytochrome bc1 complexes are found in the plasma membranes of phylogenetically diverse photosynthetic and respiring bacteria, and in the inner mitochondrial membrane of all eucaryotic cells. In all of these species the bc1 complex transfers electrons from a low-potential quinol to a higher-potential c-type cytochrome and links this electron transfer to proton translocation. Most bacteria also possess alternative pathways of quinol oxidation capable of circumventing the bc1 complex, but these pathways generally lack the energy-transducing, protontranslocating activity of the bc1 complex. All cytochrome bc1 complexes contain three electron transfer proteins which contain four redox prosthetic groups. These are cytochrome b, which contains two b heme groups that differ in their optical and thermodynamic properties; cytochrome c1, which contains a covalently bound c-type heme; and a 2Fe-2S iron-sulfur protein. The mechanism which links proton translocation to electron transfer through these proteins is the proton motive Q cycle, and this mechanism appears to be universal to all bc1 complexes. Experimentation is currently focused on understanding selected structure-function relationships prerequisite for these redox proteins to participate in the Q-cycle mechanism. The cytochrome bc1 complexes of mitochondria differ from those of bacteria, in that the former contain six to eight supernumerary polypeptides, in addition to the three redox proteins common to bacteria and mitochondria. These extra polypeptides are encoded in the nucleus and do not contain redox prosthetic groups. The functions of the supernumerary polypeptides of the mitochondrial bc1 complexes are generally not known and are being actively explored by genetically manipulating these proteins in Saccharomyces cerevisiae.  相似文献   

10.
A ternary electron transfer protein complex has been crystallized and a preliminary structure investigation has been carried out. The complex is composed of a quinoprotein, methylamine dehydrogenase (MADH), a blue copper protein, amicyanin, and a c-type cytochrome (c551i). All three proteins were isolated from Paracoccus denitrificans. The crystals of the complex are orthorhombic, space group C222(1) with cell dimensions a = 148.81 A, b = 68.85 A, and c = 187.18 A. Two types of isomorphous crystals were prepared: one using native amicyanin and the other copper-free apo-amicyanin. The diffraction data were collected at 2.75 A resolution from the former and at 2.4 A resolution from the latter. The location of the MADH portion was determined by molecular replacement. The copper site of the amicyanin molecule was located in an isomorphous difference Fourier while the iron site of the cytochrome was found in an anomalous difference Fourier. The MADH from P. denitrificans (PD-MADH) is an H2L2 hetero-tetramer with the H subunit containing 373 residues and the L subunit 131 residues, the latter containing a novel redox cofactor, tryptophan tryptophylquinone (TTQ). The amicyanin of P. denitrificans contains 105 residues and the cytochrome c551i contains 155 residues. The ternary complex consists of one MADH tetramer with two molecules of amicyanin and two of c551i, forming a hetero-octamer; the octamer is located on a crystallographic diad. The relative positions of the three redox centers--i.e., the TTQ of MADH, the copper of amicyanin, and the heme group of c55li--are presented.  相似文献   

11.
Zhu Z  Davidson VL 《Biochemistry》1999,38(15):4862-4867
The two-electron oxidation of tryptophan tryptophylquinone (TTQ) in substrate-reduced methylamine dehydrogenase (MADH) by amicyanin is known to proceed via an N-semiquinone intermediate in which the substrate-derived amino group remains covalently attached to TTQ [Bishop, G. R., and Davidson, V. L. (1996) Biochemistry 35, 8948-8954]. A new method for the stoichiometric formation of the N-semiquinone in vitro has allowed the study of the oxidation of the N-semiquinone by amicyanin in greater detail than was previously possible. Conversion of N-semiquinone TTQ to the quinone requires two biochemical events, electron transfer to amicyanin and release of ammonia from TTQ. Using rapid-scanning stopped-flow spectroscopy, it is shown that this occurs by a sequential mechanism in which oxidation to an imine (N-quinone) precedes hydrolysis by water and ammonia release. Under certain reaction conditions, the N-quinone intermediate accumulates prior to the relatively slow hydrolysis step. Correlation of these transient kinetic data with steady-state kinetic data indicates that the slow hydrolysis of the N-quinone by water does not occur in the steady state. In the presence of excess substrate, the next methylamine molecule initiates a nucleophilic attack of the N-quinone TTQ, causing release of ammonia that is concomitant with the formation of the next enzyme-substrate cofactor adduct. In light of these results, the usually accepted steady-state reaction mechanism of MADH is revised and clarified to indicate that reactions of the quinone form of TTQ are side reactions of the normal catalytic pathway. The relevance of these conclusions to the reaction mechanisms of other enzymes with carbonyl cofactors, the reactions of which proceed via Schiff base intermediates, is also discussed.  相似文献   

12.
Amicyanin is a type 1 copper protein that serves as an electron acceptor for methylamine dehydrogenase (MADH). The site of interaction with MADH is a "hydrophobic patch" of amino acid residues including those that comprise a "ligand loop" that provides three of the four copper ligands. Three prolines are present in this region. Pro94 of the ligand loop was previously shown to strongly influence the redox potential of amicyanin but not affinity for MADH or mechanism of electron transfer (ET). In this study Pro96 of the ligand loop was mutated. P96A and P96G mutations did not affect the spectroscopic or redox properties of amicyanin but increased the K(d) for complex formation with MADH and altered the kinetic mechanism for the interprotein ET reaction. Values of reorganization energy (λ) and electronic coupling (H(AB)) for the ET reaction with MADH were both increased by the mutation, indicating that the true ET reaction observed with native amicyanin was now gated by or coupled to a reconfiguration of the proteins within the complex. The crystal structure of P96G amicyanin was very similar to that of native amicyanin, but notably, in addition to the change in Pro96, the side chains of residues Phe97 and Arg99 were oriented differently. These two residues were previously shown to make contacts with MADH that were important for stabilizing the amicyanin-MADH complex. The values of K(d), λ, and H(AB) for the reactions of the Pro96 mutants with MADH are remarkably similar to those obtained previously for P52G amicyanin. Mutation of this proline, also in the hydrophobic patch, caused reorientation of the side chain of Met51, another reside that interacted with MADH and caused a change in the kinetic mechanism of ET from MADH. These results show that proline residues near the copper site play key roles in positioning other amino acid residues at the amicyanin-MADH interface not only for specific binding to the redox protein partner but also to optimize the orientation of proteins for interprotein ET.  相似文献   

13.
Many enzymes involved in bioenergetic processes contain chains of redox centers that link the protein surface, where interaction with electron donors or acceptors occurs, to a secluded catalytic site. In numerous cases these redox centers can transfer only single electrons even when they are associated to catalytic sites that perform two-electron chemistry. These chains provide no obvious contribution to enhance chemiosmotic energy conservation, and often have more redox centers than those necessary to hold sufficient electrons to sustain one catalytic turnover of the enzyme. To investigate the role of such a redox chain we analyzed the transient kinetics of fumarate reduction by two flavocytochromes c3 of Shewanella species while these enzymes were being reduced by sodium dithionite. These soluble monomeric proteins contain a chain of four hemes that interact with a flavin adenine dinucleotide (FAD) catalytic center that performs the obligatory two electron–two proton reduction of fumarate to succinate. Our results enabled us to parse the kinetic contribution of each heme towards electron uptake and conduction to the catalytic center, and to determine that the rate of fumarate reduction is modulated by the redox stage of the enzyme, which is defined by the number of reduced centers. In both enzymes the catalytically most competent redox stages are those least prevalent in a quasi-stationary condition of turnover. Furthermore, the electron distribution among the redox centers during turnover suggested how these enzymes can play a role in the switch between respiration of solid and soluble terminal electron acceptors in the anaerobic bioenergetic metabolism of Shewanella.  相似文献   

14.
Paracoccus denitrificans methylamine dehydrogenase (MADH) is an enzyme containing a quinone cofactor tryptophan tryptophylquinone (TTQ) derived from two tryptophan residues (betaTrp(57) and betaTrp(108)) within the polypeptide chain. During cofactor formation, the two tryptophan residues become covalently linked, and two carbonyl oxygens are added to the indole ring of betaTrp(57). Expression of active MADH from P. denitrificans requires four other genes in addition to those that encode the polypeptides of the MADH alpha(2)beta(2) heterotetramer. One of these, mauG, has been shown to be involved in TTQ biogenesis. It contains two covalently attached c-type hemes but exhibits unusual properties compared to c-type cytochromes and diheme cytochrome c peroxidases, to which it has some sequence similarity. To test the role that MauG may play in TTQ maturation, the predicted proximal histidine to each heme (His(35) and His(205)) has each been mutated to valine, and wild-type MADH was expressed in the background of these two mauG mutants. The resultant MADH has been characterized by mass spectrometry and electrophoretic and kinetic analyses. The majority species is a TTQ biogenesis intermediate containing a monohydroxylated betaTrp(57), suggesting that this is the natural substrate for MauG. Previous work has shown that MADH mutated at the betaTrp(108) position (the non-oxygenated TTQ partner) is predominantly also this intermediate, and work on these mutants is extended and compared to the MADH expressed in the background of the histidine to valine mauG mutations. In this study, it is unequivocally demonstrated that MauG is required to initiate the formation of the TTQ cross-link, the conversion of a single hydroxyl located on betaTrp(57) to a carbonyl, and the incorporation of the second oxygen into the TTQ ring to complete TTQ biogenesis. The properties of MauG, which are atypical of c-type cytochromes, are discussed in the context of these final stages of TTQ biogenesis.  相似文献   

15.
Ma JK  Carrell CJ  Mathews FS  Davidson VL 《Biochemistry》2006,45(27):8284-8293
Amicyanin is a type I copper protein that is the natural electron acceptor for the quinoprotein methylamine dehydrogenase (MADH). The conversion of Proline52 of amicyanin to a glycine does not alter the physical and spectroscopic properties of the copper binding site, but it does alter the rate of electron transfer (ET) from MADH. The values of electronic coupling (H(AB)) and reorganization energy (lambda) that are associated with the true ET reaction from the reduced O-quinol tryptophan tryptophylquinone (TTQ) of MADH to oxidized amicyanin are significantly altered as a consequence of the P52G mutation. The experimentally determined H(AB) increases from 12 to 78 cm(-1), and lambda increases from 2.3 to 2.8 eV. The rate and salt-dependence of the proton transfer-gated ET reaction from N-quinol MADH to amicyanin are also changed by the P52G mutation. Kinetic data suggests that a new common reaction step has become rate-limiting for both the true and gated ET reactions that occur from different redox forms of MADH. A comparison of the crystal structures of P52G amicyanin with those of native amicyanin free and in complex with MADH provided clues as to the basis for the change in ET parameters. The mutation results in the loss of three carbons from Pro52 and the movement of the neighboring residue Met51. This reduces the number of hydrophobic interactions with MADH in the complex and perturbs the protein-protein interface. A model is proposed for the ET reaction with P52G amicyanin in which the most stable conformation of the protein-protein complex with MADH is not optimal for ET. A new preceding kinetic step is introduced prior to true ET that requires P52G amicyanin to switch from this redox-inactive stable complex to a redox-active unstable complex. Thus, the ET reaction of P52G amicyanin is no longer a true ET but one that is conformationally gated by the reorientation of the proteins within the ET protein complex. This same reaction step now also gates the ET from N-quinol MADH, which is normally rate-limited by a proton transfer.  相似文献   

16.
Quino(hemo)protein alcohol dehydrogenases (ADH) that have pyrroloquinoline quinone (PQQ) as the prosthetic group are classified into 3 groups, types I, II, and III. Type I ADH is a simple quinoprotein having PQQ as the only prosthetic group, while type II and type III ADHs are quinohemoprotein having heme c as well as PQQ in the catalytic polypeptide. Type II ADH is a soluble periplasmic enzyme and is widely distributed in Proteobacteria such as Pseudomonas, Ralstonia, Comamonas, etc. In contrast, type III ADH is a membrane-bound enzyme working on the periplasmic surface solely in acetic acid bacteria. It consists of three subunits that comprise a quinohemoprotein catalytic subunit, a triheme cytochrome c subunit, and a third subunit of unknown function. The catalytic subunits of all the quino(hemo)protein ADHs have a common structural motif, a quinoprotein-specific superbarrel domain, where PQQ is deeply embedded in the center. In addition, in the type II and type III ADHs this subunit contains a unique heme c domain. Various type II ADHs each have a unique substrate specificity, accepting a wide variety of alcohols, as is discussed on the basis of recent X-ray crystallographic analyses. Electron transfer within both type II and III ADHs is discussed in terms of the intramolecular reaction from PQQ to heme c and also from heme to heme, and in terms of the intermolecular reaction with azurin and ubiquinone, respectively. Unique physiological functions of both types of quinohemoprotein ADHs are also discussed.  相似文献   

17.
Zhu Z  Jones LH  Graichen ME  Davidson VL 《Biochemistry》2000,39(30):8830-8836
Methylamine dehydrogenase (MADH) and amicyanin form a physiologic complex which is required for interprotein electron transfer. The crystal structure of this protein complex is known, and the importance of certain residues on amicyanin in its interaction with MADH has been demonstrated by site-directed mutagenesis. In this study, site-directed mutagenesis of MADH, kinetic data, and thermodynamic analysis are used to probe the molecular basis for stabilization of the protein complex by an interprotein salt bridge between Arg99 of amicyanin and Asp180 of the alpha subunit of MADH. This paper reports the first site-directed mutagenesis of MADH, as well as the construction, heterologous expression, and characterization of a six-His-tagged MADH. alpha Asp180 of MADH was converted to arginine to examine the effect on complex formation with native and mutant amicyanins. This mutation had no effect on the parameters for methylamine oxidation by MADH, but significantly affected its interaction with amicyanin. Of the native and mutant proteins that were studied, their observed order of affinity for each other was as follows: native MADH and native amicyanin > native MADH and R99D amicyanin > alpha D180R MADH and native amicyanin > alpha D180R MADH and R99D amicyanin, and alpha D180R MADH and R99L amicyanin. The alpha D180R mutation also eliminated the ionic strength dependence of the reaction of MADH with amicyanin that is observed with wild-type MADH. Interestingly, the inverse mutation pair of alpha D180R MADH and R99D amicyanin did not restore the favorable salt bridge, but instead disrupted complex formation much more severely than did either individual mutation. These results are explained using molecular modeling and thermodynamic analysis of the kinetic data to correlate the energy contributions of specific stabilizing and destabilizing interactions that are present in the wild-type and mutant complexes. A model is also proposed to describe the sequence of events that leads to stable complex formation between MADH and amicyanin.  相似文献   

18.
Phanerochaete chrysosporium cellobiose oxidoreductase (CBOR) comprises two redox domains, one containing flavin adenine dinucleotide (FAD) and the other protoheme. It reduces both two-electron acceptors, including molecular oxygen, and one-electron acceptors, including transition metal complexes and cytochrome c. If the latter reacts with the flavin, the reduced heme b acts merely as a redox buffer, but if with the b heme, enzyme action involves a true electron transfer chain. Intact CBOR fully reduced with cellobiose, CBOR partially reduced by ascorbate, and isolated ascorbate-reduced heme domain, all transfer electrons at similar rates to cytochrome c. Reduction of cationic one-electron acceptors via the heme group supports an electron transfer chain model. Analogous reactions with natural one-electron acceptors can promote Fenton chemistry, which may explain evolutionary retention of the heme domain and the enzyme's unique character among secreted sugar dehydrogenases.  相似文献   

19.
This review considers the state-of-the-art on mechanisms and alternative pathways of electron transfer in photosynthetic electron transport chains of chloroplasts and cyanobacteria. The mechanisms of electron transport control between photosystems (PS) I and II and the Calvin–Benson cycle are considered. The redistribution of electron fluxes between the noncyclic, cyclic, and pseudocyclic pathways plays an important role in the regulation of photosynthesis. Mathematical modeling of light-induced electron transport processes is considered. Particular attention is given to the electron transfer reactions on the acceptor side of PS I and to interactions of PS I with exogenous acceptors, including molecular oxygen. A kinetic model of PS I and its interaction with exogenous electron acceptors has been developed. This model is based on experimental kinetics of charge recombination in isolated PS I. Kinetic and thermodynamic parameters of the electron transfer reactions in PS I are scrutinized. The free energies of electron transfer between quinone acceptors A1A/A1B in the symmetric redox cofactor branches of PS I and iron–sulfur clusters FX, FA, and FB have been estimated. The second-order rate constants of electron transfer from PS I to external acceptors have been determined. The data suggest that byproduct formation of superoxide radical in PS I due to the reduction of molecular oxygen in the A1 site (Mehler reaction) can exceed 0.3% of the total electron flux in PS I.  相似文献   

20.
The crystal structure of the complex between the quinoprotein methylamine dehydrogenase (MADH) and the type I blue copper protein amicyanin, both from Paracoccus denitrificans, has been determined at 2.5-A resolution using molecular replacement. The search model was MADH from Thiobacillus versutus. The amicyanin could be located in an averaged electron density difference map and the model improved by refinement and model building procedures. Nine beta-strands are observed within the amicyanin molecule. The copper atom is located between three antiparallel strands and is about 2.5 A below the protein surface. The major intermolecular interactions occur between amicyanin and the light subunit of MADH where the interface is largely hydrophobic. The copper atom of amicyanin and the redox cofactor of MADH are about 9.4 A apart. One of the copper ligands, His 95, lies between the two redox centers and may facilitate electron transfer between them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号