首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adrenal chromaffin cells synthesize and release catecholamine (mostly epinephrine and norepinephrine) and different peptides, such as the neuropeptide Y (NPY). NPY stimulates catecholamine release through NPY Y1 receptor in mouse chromaffin cells. The aim of our study was to determine the intracellular signaling events coupled to NPY Y1 receptor activation that lead to stimulation of catecholamine release from mouse chromaffin cells. The stimulatory effect of NPY mediated by NPY Y1 receptor activation was lost in the absence of extracellular Ca2+. On the other hand, inhibition of nitric oxide synthase and guanylyl cyclase also decreased the stimulatory effect of NPY. Moreover, catecholamine release stimulated by NPY or by the nitric oxide donor (NOC-18) was inhibited by mitogen-activated protein kinase (MAPK) and protein kinase C inhibitors. In summary, in mouse chromaffin cells, NPY evokes catecholamine release by the activation the NPY Y1 receptor, in a Ca2+-dependent manner, by activating mitogen-activated protein kinase and promoting nitric oxide production, which in turn regulates protein kinase C and guanylyl cyclase activation.  相似文献   

2.
Adrenal chromaffin cells synthesize and secrete catecholamines and neuropeptides that may regulate hormonal and paracrine signaling in stress and also during inflammation. The aim of our work was to study the role of the cytokine interleukin-1β (IL-1β) on catecholamine release and synthesis from primary cell cultures of human adrenal chromaffin cells. The effect of IL-1β on neuropeptide Y (NPY) release and the intracellular pathways involved in catecholamine release evoked by IL-1β and NPY were also investigated. We observed that IL-1β increases the release of NPY, norepinephrine (NE), and epinephrine (EP) from human chromaffin cells. Moreover, the immunoneutralization of released NPY inhibits catecholamine release evoked by IL-1β. Moreover, IL-1β regulates catecholamine synthesis as the inhibition of tyrosine hydroxylase decreases IL-1β-evoked catecholamine release and the cytokine induces tyrosine hydroxylase Ser40 phosphorylation. Moreover, IL-1β induces catecholamine release by a mitogen-activated protein kinase (MAPK)-dependent mechanism, and by nitric oxide synthase activation. Furthermore, MAPK, protein kinase C (PKC), protein kinase A (PKA), and nitric oxide (NO) production are involved in catecholamine release evoked by NPY. Using human chromaffin cells, our data suggest that IL-1β, NPY, and nitric oxide (NO) may contribute to a regulatory loop between the immune and the adrenal systems, and this is relevant in pathological conditions such as infection, trauma, stress, or in hypertension.  相似文献   

3.
Calbindin-D(28K) is suggested to play a postsynaptic role in neurotransmission and in the regulation of the intracellular Ca(2+) concentration. However, it is still unclear whether calbindin-D(28K) has a role in the regulation of exocytosis, either as Ca(2+) buffer or as Ca(2+) sensor. Amperometric recordings of catecholamine exocytosis from wild-type and calbindin-D(28K) knockout mouse chromaffin cells reveal a strong reduction in the number of released vesicles, as well as in the amount of neurotransmitter released per fusion event in knockout cells. However, Ca(2+) current recordings and Ca(2+) imaging experiments, including video-rate confocal laser scanning microscopy, revealed that the intracellular Ca(2+) dynamics are remarkably similar in wild-type and knockout cells. The combined results demonstrate that calbindin-D(28K) plays an important and dual role in exocytosis, affecting both release frequency and quantal size, apparently without strong effects on intracellular Ca(2+) dynamics. Consequently, the possibility that calbindin-D(28K) functions not only as a Ca(2+) buffer but also as a modulator of vesicular catecholamine release is discussed.  相似文献   

4.
The subcellular localization of catecholamines and ascorbic acid in cultured bovine adrenal chromaffin cells was studied by permeabilizing the cells with digitonin, a steroid glycoside. Catecholamine release from permeabilized chromaffin cells was dependent on the free calcium concentration and the temperature of the incubation mixture. By contrast, [14C]ascorbic acid, preloaded into the cells, was released by digitonin treatment in a manner independent of the concentration of free calcium and with only moderate regard to the incubation temperature. The sensitivity of ascorbic acid release to digitonin treatment was identical to that of calcium-dependent catecholamine release. These results thus suggest that ascorbic acid preloaded into the cells may directly efflux from the cell cytoplasm as a result of the permeabilization of the plasma membrane. Dimethylepinephrine, a permanently positively charged catecholamine analog which is known to be excluded from vesicular fractions, was also released by digitonin treatment in a manner independent of calcium. The time course of dimethylepinephrine release was very similar to that of ascorbic acid release. Thus, newly accumulated ascorbic acid in chromaffin cells may be localized to a free pool in the cell cytoplasm rather than in a vesicular compartment.  相似文献   

5.
Sympathoadrenal activity was studied in 13 young piglets during hypoxia. The piglets were anaesthetized with chloralose/urethane, tracheostomized, paralyzed with gallamine and artificially ventilated. A femoral artery catheter was inserted and used for blood sampling. The piglets were challenged with 6 min of 6% CO2, 10 min of 12% O2 and 6 min of 6% O2 before and after theophylline (an adenosine receptor antagonist) treatment 20 mg/kg (n = 9) or saline (n = 4). Plasma samples were obtained before, during and after each hypercapnic or hypoxic period and analysed for their content of noradrenaline, adrenaline and neuropeptide Y. Hypercapnia with 6% CO2 and moderate hypoxia with 12% O2 did not lead to any significant increase of either noradrenaline (NA), adrenaline (A) or neuropeptide Y (NPY). However, severe hypoxia with 6% O2 increased the NA level from 30 to 66 nmol/l; the A level from 1 to 28 nmol/l and NPY from 140 to 213 pmol/l. After treatment with theophylline the baseline NA increased from 27 to 40 nmol/l, A rom 1.5 to 4.0 and NPY concentration from 65 to 171 pmol/l. Theophylline moderately enhanced the release of NPY, NA and A during the 12% O2 challenge. However, during the severe hypoxia (6%), the increase of NA (from 49 to 333 nmol/l), A (from 8 to 214 nmol/l) and NPY (from 184 to 385 pmol/l) showed considerably enhancement after the theophylline treatment. The results obtained before and after saline were similar showing that the duration of the experiments per se did not change the baseline levels or the effect of the challenges on NA, A or NPY levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Effects of mastoparan on catecholamine release from chromaffin cells   总被引:3,自引:0,他引:3  
S P Wilson 《FEBS letters》1989,247(2):239-241
Release of catecholamines from bovine adrenal chromaffin cells exposed to mastoparan, a wasp venom peptide which activates GTP-binding proteins and phospholipase A2, was evaluated. Release of catecholamines was dependent on mastoparan concentration and time of exposure. This release was, however, independent of extracellular calcium and accompanied by release of the cytoplasmic marker lactate dehydrogenase. Mastoparan also inhibited catecholamine secretion evoked by nicotine, but the peptide had little or no effect on release induced by other secretagogues. These findings suggest that in chromaffin cells mastoparan is not a secretagogue but rather causes cell lysis and blocks nicotinic receptor function.  相似文献   

7.
Pertussis toxin stimulates both basal and nicotine-evoked catecholamine secretion from intact bovine adrenal chromaffin cells, as well as Ca2(+)-evoked release from permeabilized cells. Tetanus toxin inhibits all these effects; it reduces the secretion of intact cells treated with pertussis toxin to the basal level, and decreases by about 50% Ca2(+)-evoked release from permeabilized cells whether or not previously stimulated by pertussis toxin.  相似文献   

8.
Increasing evidences suggest that neuropeptide Y (NPY) may act as a key modulator of the cross-talk between the brain and the immune system in health and disease. In the present study, we dissected the possible inhibitory role of NPY upon inflammation-associated microglial cell motility. NPY, through activation of Y(1) receptors, was found to inhibit lipopolysaccharide (LPS)-induced microglia (N9 cell line) motility. Moreover, stimulation of microglia with LPS was inhibited by IL-1 receptor antagonist (IL-1ra), suggesting the involvement of endogenous interleukin-1 beta (IL-1β) in this process. Direct stimulation with IL-1β promoted downstream p38 mitogen-activated protein kinase mobilization and increased microglia motility. Moreover, consistently, p38 mitogen-activated protein kinase inhibition decreased the extent of actin filament reorganization occurring during plasma membrane ruffling and p38 phosphorylation was inhibited by NPY, involving Y(1) receptors. Significantly, the key inhibitory role of NPY on LPS-induced motility of CD11b-positive cells was further confirmed in mouse brain cortex explants. In summary, we revealed a novel functional role for NPY in the regulation of microglial function that may have important implications in the modulation of CNS injuries/diseases where microglia migration/motility might play a role.  相似文献   

9.
Zheng J  Zhou G  Hexum TD 《Life sciences》2000,67(6):617-625
Neuropeptide Y (NPY) is secreted from bovine chromaffin cells in response to nicotinic receptor stimulation and may exhibit autocrine, paracrine or endocrine effects. Stimulation of bovine chromaffin cells with nicotine followed by the addition of forskolin (FSK) to the media results in a decrease in cyclic AMP accumulation compared to that seen in the absence of nicotine. Pertussis toxin (PTX) treatment or the addition of BIBP 3226, a selective NPY Y1 receptor antagonist prevents the inhibitory effect of nicotine. Fractionation of media obtained from cells stimulated with nicotine reveals an NPY-like substance that inhibits FSK-stimulated cAMP accumulation. Thus, an NPY-like substance can be secreted from bovine chromaffin cells in quantities sufficient to inhibit FSK-stimulated cAMP accumulation. These results suggest that NPY can act in an autocrine fashion to regulate chromaffin cell function.  相似文献   

10.
1. Effects of imidazole compounds and guanabenz on the stimulus-evoked release of catecholamine (CA) were studied in cultured bovine adrenal chromaffin cells. 2. Clonidine, oxymetazoline, phentolamine, chlorpheniramine, and guanabenz inhibited acetylcholine (ACh)-evoked CA release in a dose-dependent manner, but not high K(+)-evoked release. 3. The inhibition by these compounds was not antagonized by nonimidazole and nonguanidine alpha 2-antagonists (yohimbine and phenoxybenzamine) but was significantly antagonized by tolazoline (imidazole alpha 2-antagonist) and cimetidine (imidazole H2-antagonist). Moreover, tolazoline by itself augmented the ACh-evoked, but not the high K(+)-evoked, CA release. 4. Although chlorpheniramine and cimetidine are antagonists for H1 and H2 histaminergic receptors, the site of action for these compounds in our results seemed to differ from the histamine receptors. 5. These results suggest that the inhibitory action of imidazole compounds and guanabenz on ACh-evoked CA release in adrenal chromaffin cells is mediated through an imidazole receptor. Adrenal chromaffin cells may contain an endogenous clonidine-displacing substance (CDS) which has been found in adrenal gland and brain as an endogenous ligand for imidazole receptors. Thus, CDS may have a regulatory role in the stimulus-secretion coupling in these cells.  相似文献   

11.
Given the modulatory role of neuropeptide Y (NPY) in the immune system, we investigated the effect of NPY on the production of NO and IL-1β in microglia. Upon LPS stimulation, NPY treatment inhibited NO production as well as the expression of inducible nitric-oxide synthase (iNOS). Pharmacological studies with a selective Y(1) receptor agonist and selective antagonists for Y(1), Y(2), and Y(5) receptors demonstrated that inhibition of NO production and iNOS expression was mediated exclusively through Y(1) receptor activation. Microglial cells stimulated with LPS and ATP responded with a massive release of IL-1β, as measured by ELISA. NPY inhibited this effect, suggesting that it can strongly impair the release of IL-1β. Furthermore, we observed that IL-1β stimulation induced NO production and that the use of a selective IL-1 receptor antagonist prevented NO production upon LPS stimulation. Moreover, NPY acting through Y(1) receptor inhibited LPS-stimulated release of IL-1β, inhibiting NO synthesis. IL-1β activation of NF-κB was inhibited by NPY treatment, as observed by confocal microscopy and Western blotting analysis of nuclear translocation of NF-κB p65 subunit, leading to the decrease of NO synthesis. Our results showed that upon LPS challenge, microglial cells release IL-1β, promoting the production of NO through a NF-κB-dependent pathway. Also, NPY was able to strongly inhibit NO synthesis through Y(1) receptor activation, which prevents IL-1β release and thus inhibits nuclear translocation of NF-κB. The role of NPY in key inflammatory events may contribute to unravel novel gateways to modulate inflammation associated with brain pathology.  相似文献   

12.
Adrenal medullary chromaffin cells are a major peripheral output of the sympathetic nervous system. Catecholamine release from these cells is driven by synaptic excitation from the innervating splanchnic nerve. Acetylcholine has long been shown to be the primary transmitter at the splanchnic-chromaffin synapse, acting through ionotropic nicotinic acetylcholine receptors to elicit action potential-dependent secretion from the chromaffin cells. This cholinergic stimulation has been shown to desensitize under sustained stimulation, yet catecholamine release persists under this same condition. Recent evidence supports synaptic chromaffin cell stimulation through alternate transmitters. One candidate is pituitary adenylate cyclase activating peptide (PACAP), a peptide transmitter present in the adrenal medulla shown to have an excitatory effect on chromaffin cell secretion. In this study we utilize native neuronal stimulation of adrenal chromaffin cells in situ and amperometric catecholamine detection to demonstrate that PACAP specifically elicits catecholamine release under elevated splanchnic firing. Further data reveal that the immediate PACAP-evoked stimulation involves a phospholipase C and protein kinase C-dependant pathway to facilitate calcium influx through a Ni2+ and mibefradil-sensitive calcium conductance that results in catecholamine release. These data demonstrate that PACAP acts as a primary secretagogue at the sympatho-adrenal synapse under the stress response.  相似文献   

13.
Adrenal medullary chromaffin cells were permeabilized by treatment with a streptococcal cytotoxin streptolysin O (SLO) which generates pores of macromolecular dimensions in the plasma membrane. SLO did not provoke spontaneous release of catecholamines or chromogranin A, a protein marker of the secretory granule, showing the integrity of the secretory vesicle membrane. However, the addition of micromolar free calcium concentration induced the corelease of noradrenaline and chromogranin A, indicating that secretory products are liberated by exocytosis. Calcium-dependent exocytosis from SLO-permeabilized cells required Mg-ATP and could not occur in the presence of other nucleotides. The pores generated by the toxin were large enough to introduce proteins, e.g., immunoglobulins, but also caused efflux of the cytosolic marker lactate dehydrogenase. Despite this, the cells remained responsive to calcium for up to 30 min after permeabilization, indicating that they retained their secretory machinery. In the search for a functional role of cytoskeletal proteins in the secretory process, we used SLO-permeabilized cells to examine the localization of filamentous actin, using rhodamine-phalloidin, and that of the actin-severing protein, gelsolin, using specific antibodies. It was found that both F-actin and gelsolin were exclusively localized in the subplasmalemmal region of the cell. We examined the relationship between actin disassembly, the elevation of intracellular calcium and secretion in SLO-treated cells. F-Actin destabilizing agents such as cytochalasin D or DNase I were found to potentiate calcium-stimulated release. The maximal effect was observed at low calcium concentrations (1-4 microM) and at the later stages of the secretory response (after 10 min stimulation). In addition, using rhodamine-phalloidin, we observed that calcium provoked simultaneously both cortical actin disassembly and catecholamine release in SLO-permeabilized cells. These results demonstrate that a close relationship exists between the secretory response and actin disassembly and provide further evidence that intracellular calcium controls the subplasmalemmal cytoskeletal actin organization and thereby the access of secretory granules to exocytotic sites.  相似文献   

14.
15.
Tetanus toxin, a potent neurotoxin which blocks neurotransmitter release in the CNS, also inhibits Ca2+-induced catecholamine release from digitonin-permeabilized, but not from intact bovine chromaffin cells. In searching for intracellular targets for the toxin we studied the binding of affinity-purified tetanus toxin to bovine adrenal chromaffin granules. Tetanus toxin bound in a neuraminidase-sensitive fashion to intact granules and to isolated granule membranes, as assayed biochemically and visualized by electron microscopic techniques. The binding characteristics of the toxin to chromaffin granule membranes are very similar to the binding of tetanus toxin to brain synaptosomal membranes. We suggest that the toxin-binding site is a glycoconjugate of the G1b type (a polysialoganglioside or a glycoprotein-proteoglycan) which is localized on the cytoplasmic face of the granule membrane and might directly be involved in exocytotic membrane fusion.  相似文献   

16.
Pretreatment of cultured bovine adrenal chromaffin cells with pertussis toxin facilitated nicotine-induced catecholamine release. This facilitation was correlated with the ability of the toxin to catalyze the ADP-ribosylation of an approximately 40-kDa membrane protein. The actions of the toxin were reversed by isonicotinamide, an inhibitor of ADP-ribosylation. Catecholamine release due to high K+ and muscarine was also enhanced by pertussis toxin. In all cases, 45Ca2+ uptake was unaltered in cells treated with the toxin. These results suggest that ADP-ribosylation of a 40-kDa membrane protein facilitates catecholamine release from bovine chromaffin cells without affecting 45Ca2+ uptake.  相似文献   

17.
The aim of the present work was to study the effect of angiotensin II (Ang II) on catecholamines and neuropeptide Y (NPY) release in primary cultures of human adrenal chromaffin cells. Ang II stimulates norepinephrine (NE), epinephrine (EP) and NPY release from perifused chromaffin cells by 3-, 2- and 12-fold, respectively. The NPY release is more sustained than that of catecholamines. We found that the receptor-AT(2) agonist, T(2)-(Ang II 4-8)(2) has no effect on NE, EP and NPY release from chromaffin cells. We further showed that Ang II increases intracellular Ca(2+) concentration ([Ca(2+)](i)). The selective AT(1)-receptor antagonist Candesartan blocked [Ca(2+)](i) increase by Ang II, while T(2)-(Ang II 4-8)(2) was ineffective. These findings demonstrate that AT(1) stimulation induces catecholamine secretion from human adrenal chromaffin cells probably by raising cytosolic calcium.  相似文献   

18.
Morphologic and immunohistochemical studies were conducted to ascertain whether pumiliotoxin-B (PTX-B), an indolizine alkaloid from the skin of the Neotropical dendrobatid frog, Dendrobates pumilio, affects the anatomic and immunohistochemical features of the electrically stimulated mouse vas deferens preparations. PTX-B, at a concentration of 1 microM, consistently decreased the density pattern of neuropeptide Y (NPY)-immunoreactive nerve fibers contained within the circular muscular layer. The alkaloid also induced striking morphologic changes. It enlarged the lumen of the vasa and relaxed the muscular wall. Pretreatment with prazosin or haloperidol affected neither the release of NPY nor the morphologic changes; pretreatment with tetrodotoxin and guanethidine abolished NPY release and prevented the PTX-B-induced morphologic changes. PTX-B had no appreciable effect on the density and distribution pattern of nerve fibers immunostained for vasoactive intestinal polypeptide, substance P, calcitonin gene-related peptide, enkephalin, pancreatic polypeptide, 5-hydroxy-tryptamine and tyrosine hydroxylase.  相似文献   

19.
Skinned cells treated with the adenosine triphosphate analog, adenosine-5'-0-(3-thiotriphosphate) showed calcium-dependent thiophosphorylation of cellular constituents. Catecholamine secretion was inhibited when the analog was used as the substrate to promote secretion. The attenuation of secretion was proportional to the percentage of the analog in mixtures with adenosine triphosphate. Moreover, cells treated with the analog were subsequently unable to secrete when presented with MgATP, their normal substrate, indicating that the secretory systems was locked in the thiophosphorylated state. We hypothesize that phosphorylation is the calcium-dependent step required to prime the secretory system for secretion while dephosphorylation is the event required for exocytosis.  相似文献   

20.
The secretion of interleukin-6 (IL-6) is modulated by immune, hormonal and metabolic stimuli in a cell-specific manner. We investigated the effect of cytokines, TNFalpha and IL-1beta, and insulin on IL-6 release from human adipocytes and peripheral blood cells (PBC). Adipocytes released IL-6 constitutively (after 5 h: 5.64 [1.61-15.30]pg ml(-1), after 10 h: 15.95 [2.34-45.59]pg ml(-1), p = 0.007), while PBC secretion did not change significantly over this period. LPS stimulated IL-6 secretion in PBC after 5 h but was without effect on adipocytes. TNFalpha and insulin induced IL-6 production from PBC, but had no effect on adipocytes. IL-1beta, however, induced a substantial increase in IL-6 release in adipocytes and PBC (all p < 0.05). Adipose tissue production of IL-1beta was assessed in vivo by measuring arterio-venous differences across the subcutaneous abdominal adipose bed. Net release of IL-1beta was not observed, suggesting that under basal conditions there is no detectable release of this cytokine into the circulation from this depot. In conclusion (1) PBC demonstrate regulated IL-6 release, while the adipocyte release has a large constitutive component; (2) immune modulators, such as LPS, TNFalpha and IL-1beta, all induce PBC IL-6 release, but only IL-1beta stimulates adipocyte release. Though IL-1beta is not an endocrine signal from adipose tissue, it is an autocrine/paracrine stimulator of IL-6 release from human adipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号