首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro and in vivo Ca(2+)-uptake by the liver is increased by ferric lactate. In vitro albumin and deferoxamine inhibit ferric lactate effects. Electrophoresis demonstrates the binding of ferric lactate to albumin. In vivo, ferric lactate induces a significant increase of Ca(2+)-uptake by liver, with a maximum of 2.9 nmol/g against 0.66 nmol/g for control livers (P less than 0.005) between 5 and 24 h after administration. This uptake modification is reversible, while the amount of iron (measured as 59Fe taken up) remains constant throughout the experiment. The affinity of ferric lactate for protein and the iron mass-dependence of Ca(2+)-uptake increase support for the hypothesis of a ferric lactate-cell membrane interaction rather than an iron-catalyzed cell injury by lipid peroxidation as the major event leading to an increased Ca(2+)-uptake.  相似文献   

2.
1. Mitochondrial and microsomal fractions were prepared from rat parotid glands. Both fractions were able to take up (45)Ca. The mitochondrial (45)Ca-uptake system could be driven by ATP (energy-coupled Ca(2+) uptake) or by ADP+succinate (respiration-coupled Ca(2+) uptake). Energy-coupled Ca(2+) uptake was blocked by oligomycin but not by carbonyl cyanide m-chlorophenylhydrazone; respiration-coupled Ca(2+) uptake was blocked by carbonyl cyanide m-chlorophenylhydrazone but not by oligomycin. Microsomal Ca(2+) uptake was dependent on the presence of ATP; the ATP-dependent Ca(2+) uptake was not affected by oligomycin or carbonyl cyanide m-chlorophenylhydrazone. Ca(2+) uptake by both fractions was inhibited by Ni(2+). 2. Incubation of parotid pieces with adrenaline increased the rate of release of amylase and the uptake of (45)Ca. The adrenaline-stimulated release of amylase was not dependent on the presence of extracellular Ca(2+). 3. The effect of adrenaline on the subcellular distribution of (45)Ca in parotid pieces incubated with (45)Ca was studied. In parotid tissue incubated with (45)Ca, both mitochondrial and microsomal fractions contained (45)Ca. Incubation with adrenaline increased the amount of (45)Ca incorporated into the mitochondrial fraction but not the microsomal fraction. In parotid tissue preloaded with (45)Ca subsequent incubation with adrenaline caused a decrease in the amount of (45)Ca found in both the mitochondrial and microsomal fractions. 4. From these data we conclude that the regulation of the cytosolic Ca(2+) concentration in the parotid may involve both mitochondrial and microsomal Ca(2+)-uptake systems. We suggest that the action of adrenaline on the parotid may be to increase the movement of Ca(2+) to the cytosol by increasing the flux of Ca(2+) across mitochondrial, microsomal and plasma membranes.  相似文献   

3.
Two calcium channel antagonists, verapamil and nifedipine, have been used to explore the dependence of secretion on voltage-gated influx of calcium. Both antagonists were able to suppress the secretory response to K(+)-depolarization as well as the stimulation of 45Ca(2+)-uptake. However, they inhibited only partially the stimulation of both secretion and 45Ca(2+)-uptake. However, they inhibited only partially the stimulation of both secretion and 45Ca(2+)-uptake induced by glucose, alone or with palmitate. The stimulation of 45Ca(2+)-uptake by K(+)-depolarization, unlike that induced by glucose, was not sensitive to norepinephrine, starvation or fatty acid oxidation inhibitors. Therefore, it is suggested that glucose either modifies the properties of the voltage-dependent calcium channel and/or accelerates the exchange of a particular intracellular pool of calcium.  相似文献   

4.
L J Anghileri 《Cell calcium》1991,12(5):371-374
Fe3+ ions complexed by various ligands induce an increased Ca2+ uptake by Ehrlich carcinoma ascites cells that is proportional to the thermodynamic stability constant of the complex, and the greatest increase is observed with ferric lactate. The absence of ATPase inhibition showed by this ferric complex, suggests that an increased passive diffusion of Ca2+ due to structural modifications of the cell membrane is the most probable cause of this phenomenon.  相似文献   

5.
In vertebrate cells calcium-induced calcium release (CICR) is thought to be responsible for rapid cytosolic Ca(2+) elevations despite the occurrence of strong Ca(2+) buffering within the cytosol. In Dictyostelium, a CICR mechanism has not been reported. While analyzing Ca(2+) regulation in a vesicular fraction of Dictyostelium rich in Ca(2+)-flux activity, containing contractile vacuoles (CV) as the main component of acidic Ca(2+) stores and ER, we detected a rapid Ca(2+) change upon addition of Ca(2+) (CIC). CIC was three times larger in active stores accumulating Ca(2+) than before Ca(2+) uptake and in inactivated stores. Ca(2+) release was demonstrated with the calmodulin antagonist W7 that inhibits the V-type H(+)ATPase activity and Ca(2+) uptake of acidic Ca(2+) stores. W7 caused a rapid and large increase of extravesicular Ca(2+) ([Ca(2+)](e)), much faster and larger than thapsigargin (Tg), a Ca(2+)-uptake inhibitor of the ER. W7 treatment blocked CIC indicating that a large part of CIC is due to Ca(2+) release. The height of CIC depended on the filling state of the Ca(2+) stores. CIC was virtually unchanged in the iplA(-) strain that lacks a putative IP(3) or ryanodine receptor thought to be located at the endoplasmic reticulum. By contrast, CIC was reduced in two mutants, HGR8 and lvsA(-), that are impaired in acidic Ca(2+)-store function. Purified Ca(2+) stores enriched in CV still displayed CIC, indicating that CV are a source of Ca(2+)-induced Ca(2+) release. CIC-defective mutants were altered in their oscillatory properties. The irregularity of the HGR8 oscillation suggests that the principal oscillator is affected in this mutant.  相似文献   

6.
The gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in vertebrate CNS. At GABAergic synapses, a high-affinity transporter exists, which is responsible for GABA reuptake and release during neurotransmission. GABA transporter activity depends on the phosphorylation/dephosphorylation state, being modulated by Ca(2+)/calmodulin-dependent protein phosphatase 2B (calcineurin). Aluminium is known to interfere with the Ca(2+)/calmodulin signalling pathway. In this work, we investigate the action of aluminium on GABA translocation mediated by the high-affinity transporter, using synaptic plasma membrane (SPM) vesicles and synaptosomes isolated from brain cortex. Aluminium completely relieved Ca(2+) downregulation of GABA transporter, when mediating uptake or release. Accordingly, aluminium inhibited Ca(2+)/calmodulin-dependent calcineurin activity present in SPM, in a concentration-dependent manner. The deleterious action of aluminium on the modulation of GABA transport was ascertained by comparative analysis of the aluminium effect on GABA uptake and release, under conditions favouring SPM dephosphorylation (presence of intracellular micromolar Ca(2+)) or phosphorylation (absence of Ca(2+) and/or presence of W-7, a selective calmodulin antagonist). In conclusion, aluminium-induced relief of Ca(2+) modulatory action on GABA transporter may contribute significantly to modify GABAergic signalling during neurotoxic events in response to aluminium exposure.  相似文献   

7.
The influence of NO donors, nitroglycerin (NG) and sodium nitroprusside (SNP), on Ca2+- uptake in rat heart and liver mitochondria is studied. It is shown that in vivo NG causes a rapid dose-dependent increase of Ca2+-uptake in rat heart mitochondria most pronounced at 0,5-1,0 mg/kg weight NG. This sharp increase of Ca2+-uptake is not accounted for by changes in membrane potential of mitochondria (deltapsim) because deltapsim is not influenced by less than 1,0 mg/kg NG, and moreover, decrease by approximately 30% is observed at 1,0-1,5 mg/kg NG. In vitro, on the contrary, a concentration-dependent decrease in Ca2+-uptake caused by NG as well as SNP is observed together with simultaneous decrease of deltapsim and concentration-dependent release of Ca2+ from mitochondria via Ca2+-uniporter as the result of partial depolarisation of mitochondrial inner membrane. The data obtained give an evidence that increase in Ca2+-uptake caused by NO donor in vivo takes place independently of changes in deltapsim and also is not resulted from a direct action of NO on Ca2+-uniporter. These observations allow us to suppose that activation of mitochondrial Ca2+-uptake in vivo and corresponding decrease in cytosolic Ca2+ concentration could be involved in vasodilatory action of nitric oxide.  相似文献   

8.
Uptake of 45Ca2+ by a microsomal fraction isolated pancreatic islets of non-inbred ob/ob mice was studied. ATP strongly stimulated 45Ca2+ uptake, the maximum effect being obtained with 2mM-ATP. GTP and CTP at this concentration did not increase the uptake. Scatchard analysis revealed at least two types of uptake mechanisms in the presence of 2mM-ATP; the apparent association constants were 1.1 x 10(5)m(-1) and less than 2.5 x 10(2)m(-1). In contradistinction to an unaffected low-affinity uptake, the high-affinity uptake was drastically decreased on ommission of ATP. The ATP-dependent and high-affinity uptake was half-saturated at about 10-20mum-Ca(2+) and was inhibited by 10 or 100mum cyclic AMP, 10mum cyclic GMP, 10 mum cyclic GMP, or 5mm-theophylline. 45ca2+ uptake in the absence of ATP was not affected by 100mum-cyclic AMP. In view of its sensitivity to ATP and cyclic nucleotides, the high-affinity Ca2+-uptake mechaniam may play a role in stimulus-secretion coupling in the beta-cells by regulating the cytosolic concentration of Ca2+.  相似文献   

9.
The effect of modulators of protein kinase C activity on Ca2+ translocation in dark-adapted and bleached retinal rod outer segments (ROS) was studied. The activators (1,2-diacyl glycerol and phorbol-12-myristate-13-acetate) and the inhibitor (chelerythrine chloride) of protein kinase C were shown to stimulate and inhibit the ATP-dependent Ca(2+)-uptake in dark-adapted retinal ROS, correspondingly. Apparently, this action is due to the influence of protein kinase C on Ca(2+)-ATPase activity in these vesicular structures. No involvement of modulators of protein kinase C activity on ATP-dependent Ca(2+)-uptake in bleached retinal ROS was found. The influence of protein kinase C on Ca(2+)-release from retinal ROS was observed. It was shown that the activators and inhibitors of protein kinase C increased the efficiency of this process both in dark-adapted and bleached retinal ROS. The mechanisms of action of the protein kinase C activity modulators on the Ca(2+)-uptake and Ca(2+)-release in retinal ROS are discussed.  相似文献   

10.
The sarcoplasmic reticulum (SR) plays a critical role in mediating cardiac contractility and its function is abnormal in the diabetic heart. However, the mechanisms underlying SR dysfunction in the diabetic heart are not clear. Because protein phosphorylation regulates SR function, this study examined the phosphorylation state of phospholamban, a key SR protein that regulates SR calcium (Ca2+) uptake in the heart. Diabetes was induced in male Sprague-Dawley rats by an injection of streptozotocin (STZ; 65 mg kg(-1) i.v.), and the animals were humanely killed after 6 weeks and cardiac SR function was examined. Depressed cardiac performance was associated with reduced SR Ca2+-uptake activity in diabetic animals. The reduction in SR Ca2+-uptake was consistent with a significant decrease in the level of SR Ca2+-pump ATPase (SERCA2a) protein. The level of phospholamban (PLB) protein was also decreased, however, the ratio of PLB to SERCA2a was increased in the diabetic heart. Depressed SR Ca2+-uptake was also due to a reduction in the phosphorylation of PLB by the Ca2+-calmodulin-dependent protein kinase (CaMK) and cAMP-dependent protein kinase (PKA). Although the activities of the SR-associated Ca2+-calmodulin-dependent protein kinase (CaMK), cAMP-dependent protein kinase (PKA) were increased in the diabetic heart, depressed phosphorylation of PLB could partly be attributed to an increase in the SR-associated protein phosphatase activities. These results suggest that there is increased inhibition of SERCA2a by PLB and this appears to be a major defect underlying SR dysfunction in the diabetic heart.  相似文献   

11.
We have previously demonstrated [M. Campos-Toimil, T. Bagrij, J.M. Edwardson, P. Thomas, Two modes of secretion in pancreatic acinar cells: involvement of phosphatidylinositol 3-kinase and regulation by capacitative Ca(2+) entry, Curr. Biol. 12 (2002) 211-215] that in rat pancreatic acinar cells, Gd(3+)-sensitive Ca(2+) entry is instrumental in governing which second messenger pathways control secretory activity. However, in those studies, we were unable to demonstrate a significant increase in cytoplasmic [Ca(2+)] during agonist application as a result of this entry pathway. In the present study, we combined pharmacology with ratiometric imaging of fura-2 fluorescence to resolve this issue. We found that 2 microM Gd(3+) significantly inhibits store-mediated Ca(2+) entry. Furthermore, both the protonophore, CCCP (5 microM) and the mitochondrial Ca(2+)-uptake blocker, RU360 (10 microM), led to an enhancement of the plateau phase of the biphasic Ca(2+) response induced by acetylcholine (1 microM). This enhancement was completely abolished by Gd(3+); and as has been previously shown for Gd(3+), RU360 led to a switch to a wortmannin-sensitive form of exocytosis. Using MitoTracker Red staining we found a close association of mitochondria with the lateral plasma membrane. We propose that in rat pancreatic acinar cells, capacitative Ca(2+) entry is targeted directly to mitochondria; and that as a result of Ca(2+) uptake, these mitochondria release "third" messengers which both enhance exocytosis and suppress phosphatidylinositol 3-kinase-dependent secretion.  相似文献   

12.
Activation of protein kinase C (PKC) in heart muscle signals hypertrophy and may also directly affect contractile function. We tested this idea using a transgenic (TG) mouse model in which conditionally expressed PKCbeta was turned on at 10 wk of age and remained on for either 6 or 10 mo. Compared with controls, TG cardiac myocytes demonstrated an increase in the peak amplitude of the Ca(2+) transient, an increase in the extent and rate of shortening, and an increase in the rate of relengthening at both 6 and 10 mo of age. Phospholamban phosphorylation and Ca(2+)-uptake rates of sarcoplasmic reticulum vesicles were the same in TG and control heart preparations. At 10 mo, TG skinned fiber bundles demonstrated the same sensitivity to Ca(2+) as controls, but maximum tension was depressed and there was increased myofilament protein phosphorylation. Our results differ from studies in which PKCbeta was constitutively overexpressed in the heart and in studies that reported a depression of myocyte contraction with no change in the Ca(2+) transient.  相似文献   

13.
The metal-ion requirement of extracted and partially purified pyruvate dehydrogenase phosphate phosphatase from rat epididymal fat-pads was investigated with pig heart pyruvate dehydrogenase [(32)P]phosphate as substrate. The enzyme required Mg(2+) (K(m) 0.5mm) and was activated additionally by Ca(2+) (K(m) 1mum) or Sr(2+) and inhibited by Ni(2+). Isolated fat-cell mitochondria, like liver mitochondria, possess a respiration- or ATP-linked Ca(2+)-uptake system which is inhibited by Ruthenium Red, by uncouplers when linked to respiration, and by oligomycin when linked to ATP. Depletion of fat-cell mitochondria of 75% of their total magnesium content and of 94% of their total calcium content by incubation with the bivalent-metal ionophore A23187 leads to complete loss of pyruvate dehydrogenase phosphate phosphatase activity. Restoration of full activity required addition of both MgCl(2) and CaCl(2). SrCl(2) could replace CaCl(2) (but not MgCl(2)) and NiCl(2) was inhibitory. The metal-ion requirement of the phosphatase within mitochondria was thus equivalent to that of the extracted enzyme. Insulin activation of pyruvate dehydrogenase in rat epididymal fat-pads was not accompanied by any measurable increase in the activity of the phosphatase in extracts of the tissue when either endogenous substrate or (32)P-labelled pig heart substrate was used for assay. The activation of pyruvate dehydrogenase in fat-pads by insulin was inhibited by Ruthenium Red (which may inhibit cell and mitochondrial uptake of Ca(2+)) and by MnCl(2) and NiCl(2) (which may inhibit cell uptake of Ca(2+)). It is concluded that Mg(2+) and Ca(2+) are cofactors for pyruvate dehydrogenase phosphate phosphatase and that an increased mitochondrial uptake of Ca(2+) might contribute to the activation of pyruvate dehydrogenase by insulin.  相似文献   

14.
Returning to normal pH after acidosis, similar to reperfusion after ischemia, is prone to arrhythmias. The type and mechanisms of these arrhythmias have never been explored and were the aim of the present work. Langendorff-perfused rat/mice hearts and rat-isolated myocytes were subjected to respiratory acidosis and then returned to normal pH. Monophasic action potentials and left ventricular developed pressure were recorded. The removal of acidosis provoked ectopic beats that were blunted by 1 muM of the CaMKII inhibitor KN-93, 1 muM thapsigargin, to inhibit sarcoplasmic reticulum (SR) Ca(2+) uptake, and 30 nM ryanodine or 45 muM dantrolene, to inhibit SR Ca(2+) release and were not observed in a transgenic mouse model with inhibition of CaMKII targeted to the SR. Acidosis increased the phosphorylation of Thr(17) site of phospholamban (PT-PLN) and SR Ca(2+) load. Both effects were precluded by KN-93. The return to normal pH was associated with an increase in SR Ca(2+) leak, when compared with that of control or with acidosis at the same SR Ca(2+) content. Ca(2+) leak occurred without changes in the phosphorylation of ryanodine receptors type 2 (RyR2) and was blunted by KN-93. Experiments in planar lipid bilayers confirmed the reversible inhibitory effect of acidosis on RyR2. Ectopic activity was triggered by membrane depolarizations (delayed afterdepolarizations), primarily occurring in epicardium and were prevented by KN-93. The results reveal that arrhythmias after acidosis are dependent on CaMKII activation and are associated with an increase in SR Ca(2+) load, which appears to be mainly due to the increase in PT-PLN.  相似文献   

15.
RNA synthesis and ATP-dependent (45)Ca(2+) uptake were measured simultaneously in isolated nuclear fraction of rat liver nuclei. Maximal level of RNA synthesis was obtained under ATP-dependent (45)Ca(2+)-uptake conditions (1 microM free [Ca(2+)] and 1 mM ATP in the bathing solution). This experimental condition was defined as "stimulated nuclei" condition. ATP-dependent (45)Ca(2+) uptake was inhibited using different strategies including: (a) eliminating Ca(2+) (1 mM EGTA); (b) lowering the ATP concentration; (c) modifying nuclear envelope membranes Ca(2+) permeability (Ca(2+) ionophores); or (d) inhibiting the nuclear Ca(2+) pump (thapsigargin and 3',3',5',5'-tetraiodophenolsulfonephthalein). Under all the above conditions, RNA synthesis was lower than in "stimulated nuclei" condition. In the presence of ionomycin, RNA synthesis was significantly higher at 500 nM free [Ca(2+)], as compared with RNA synthesis in a Ca(2+)-free medium or at 1muM free [Ca(2+)]. However, even in such condition (500 nM free [Ca(2+)]), RNA synthesis was lower than RNA synthesis obtained in "stimulated nuclei" condition. We suggest two components for the effect of Ca(2+) on RNA synthesis: (A) a direct effect of nucleoplasmic [Ca(2+)]; and (B) an effect dependent on the accumulation of Ca(2+) in the nuclear envelope store mediated by the SERCA nuclear Ca(2+) pump.  相似文献   

16.
Ca(2+)-loaded calmodulin normally inhibits multiple Ca(2+)-channels upon dangerous elevation of intracellular Ca(2+) and protects cells from Ca(2+)-cytotoxicity, so blocking of calmodulin should theoretically lead to uncontrolled elevation of intracellular Ca(2+). Paradoxically, classical anti-psychotic, anti-calmodulin drugs were noted here to inhibit Ca(2+)-uptake via the vanilloid inducible Ca(2+)-channel/inflamatory pain receptor 1 (TRPV1), which suggests that calmodulin inhibitors may block pore formation and Ca(2+) entry. Functional assays on TRPV1 expressing cells support direct, dose-dependent inhibition of vanilloid-induced (45)Ca(2+)-uptake at microM concentrations: calmidazolium (broad range) > or = trifluoperazine (narrow range) chlorpromazine/amitriptyline>fluphenazine>W-7 and W-13 (only partially). Most likely a short acidic domain at the pore loop of the channel orifice functions as binding site either for Ca(2+) or anti-calmodulin drugs. Camstatin, a selective peptide blocker of calmodulin, inhibits vanilloid-induced Ca(2+)-uptake in intact TRPV1(+) cells, and suggests an extracellular site of inhibition. TRPV1(+), inflammatory pain-conferring nociceptive neurons from sensory ganglia, were blocked by various anti-psychotic and anti-calmodulin drugs. Among them, calmidazolium, the most effective calmodulin agonist, blocked Ca(2+)-entry by a non-competitive kinetics, affecting the TRPV1 at a different site than the vanilloid binding pocket. Data suggest that various calmodulin antagonists dock to an extracellular site, not found in other Ca(2+)-channels. Calmodulin antagonist-evoked inhibition of TRPV1 and NMDA receptors/Ca(2+)-channels was validated by microiontophoresis of calmidazolium to laminectomised rat monitored with extracellular single unit recordings in vivo. These unexpected findings may explain empirically noted efficacy of clinical pain adjuvant therapy that justify efforts to develop hits into painkillers, selective to sensory Ca(2+)-channels but not affecting motoneurons.  相似文献   

17.
In order to understand the mechanisms of exercise intolerance and muscle fatigue, which are commonly observed in congestive heart failure, we studied sarcoplasmic reticulum (SR) Ca(2+)-transport in the hind-leg skeletal muscle of rats subjected to myocardial infarction (MI). Sham-operated animals were used for comparison. On one hand, the maximal velocities (Vmax) for both SR Ca(2+)-uptake and Ca(2+)-stimulated ATPase activities in skeletal muscle of rats at 8 weeks of MI were higher than those of controls. On the other hand, the Vmax values for both SR Ca(2+)-uptake and Ca(2+)-stimulated ATPase activities were decreased significantly at 16 weeks of MI when compared with controls. These alterations in Ca(2+)-transport activities were not associated with any change in the affinity (1/Ka) of the SR Ca(2+)-pump for Ca2+. Furthermore, the stimulation of SR Ca(2+)-stimulated ATPase activity by cyclic AMP-dependent protein kinase was not altered at 8 or 16 weeks of MI when compared with the respective control values. Treatment of 3-week infarcted animals with angiotensin-converting enzyme (ACE) inhibitors such as captopril, imidapril, and enalapril or an angiotensin receptor (AT1R) antagonist, losartan, for a period of 13 weeks not only attenuated changes in left ventricular function but also prevented defects in SR Ca(2+)-pump in skeletal muscle. These results indicate that the skeletal muscle SR Ca(2+)-transport is altered in a biphasic manner in heart failure due to MI. It is suggested that the initial increase in SR Ca(2+)-pump activity in skeletal muscle may be compensatory whereas the depression at late stages of MI may play a role in exercise intolerance and muscle fatigue in congestive heart failure. Furthermore, the improvements in the skeletal muscle SR Ca(2+)-transport by ACE inhibitors may be due to the decreased activity of renin-angiotensin system in congestive heart failure.  相似文献   

18.
Purified cardiac sarcolemma (SL) vesicles are highly suitable to study various Ca2+-transport systems present in the SL. We describe in this paper the separation of the Inside-Out (IO) and Right side-Out (RO) oriented vesicle subpopulations from a purified rat heart SL preparation. The isolated subfractions were characterized with respect to the number of beta-adrenergic binding sites and the Ca2+-uptake and (Ca2+-Mg2+)-ATPase activities. It was found that the Ca2+-uptake and the (Ca2+-Mg2+)-ATPase activities reside in the IO fraction and are virtually absent in the RO fraction, confirming that the active Ca2+-uptake represents the outward directed sarcolemmal Ca2+-flux.  相似文献   

19.
Plasma membrane (Ca2+-Mg2+)ATPase purified from bovine aortic microsomes by calmodulin affinity chromatography was incorporated into soybean phospholipid liposomes. In the reconstituted proteoliposomes, a protein corresponding to the ATPase was phosphorylated by [gamma-32P]ATP in the presence of cGMP and cGMP-dependent protein kinase. Both the affinity for Ca2+ and the maximum Ca2+ uptake activity by the proteoliposomes were increased by the cGMP-dependent phosphorylation, and there was good parallelism between the Ca2+-uptake rate and the extent of phosphorylation. These results strongly suggest that the Ca2+-transport ATPase of the vascular smooth muscle plasma membrane is regulated through its cGMP-dependent phosphorylation.  相似文献   

20.
The sarcoplasmic reticulum (SR) is composed of two fractions, the heavy fraction that contains proteins involved in Ca2+ release, and the light fraction enriched in Ca(2+)-ATPase (SERCA), an enzyme responsible for Ca2+ transport from the cytosol to the lumen of SR. It is known that in red muscle thyroid hormones regulate the expression of SERCA 1 and SERCA 2 isoforms. Here we show the effects of thyroid hormone on SERCA expression and distribution in light and heavy SR fractions from rabbit white and red muscles. In hyperthyroid red muscle there is an increase of SERCA 1 and a decrease of SERCA 2 expression. This is far more pronounced in the heavy than in the light SR fraction. As a result, the rates of Ca(2+)- ATPase activity and Ca(2+)-uptake by the heavy vesicles are increased. In hypothyroidism we observed a decrease in SERCA 1 and no changes in the amount of SERCA 2 expressed. This promoted a decrease of both Ca(2+)-uptake and Ca(2+)-ATPase activity. While the major differences in hyperthyroidism were found in the heavy SR fraction, the effects of hypothyroidism were restricted to light SR fraction. In white muscle we did not observe any significant changes in either hypo- or hyperthyroidism in both SR fractions. Thus, the regulation of SERCA isoforms by thyroid hormones is not only muscle specific but also varies depending on the subcellular compartment analyzed. These changes might correspond to the molecular basis of the altered contraction and relaxation rates detected in thyroid dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号