首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, we developed an improved comet assay protocol for evaluating single-strand break repair capacity (SSB-RC) in unstimulated cryopreserved human peripheral blood mononuclear cells (PBMCs). This methodology facilitates control of interexperimental variability [A.R. Trzeciak, J. Barnes, M.K. Evans, A modified alkaline comet assay for measuring DNA repair capacity in human populations. Radiat. Res. 169 (2008) 110-121]. The fast component of SSB repair (F-SSB-RC) was assessed using a novel parameter, the initial rate of DNA repair, and the widely used half-time of DNA repair. The slow component of SSB repair (S-SSB-RC) was estimated using the residual DNA damage after 60 min. We have examined repair of gamma-radiation-induced DNA damage in PBMCs from four age-matched groups of male and female whites and African-Americans between ages 30 and 64. There is an increase in F-SSB-RC with age in white females (P<0.01) and nonsignificant decrease in F-SSB-RC in African-American females (P=0.061). F-SSB-RC is lower in white females than in white males (P<0.01). There is a decrease in F-SSB-RC with age in African-American females as compared to white females (P<0.002) and African-American males (nonsignificant, P=0.059). Age, sex, and race had a similar effect on intercellular variability of DNA damage in gamma-irradiated and repairing PBMCs. Our findings suggest that age, sex, and race influence SSB-RC as measured by the alkaline comet assay. SSB-RC may be a useful clinical biomarker.  相似文献   

2.
Experiments using the alkaline comet assay, which measures all single-strand breaks regardless of their origin, were performed to evaluate the biological effectiveness of photons with different energies in causing these breaks. The aim was to measure human lymphocytes directly for DNA damage and subsequent repair kinetics induced by mammography 29 kV X rays relative to 220 kV X rays, 137Cs gamma rays and 60Co gamma rays. The level of DNA damage, predominantly due to single-strand breaks, was computed as the Olive tail moment or percentage DNA in the tail for different air kerma doses (0.5, 0.75, 1, 1.5, 2 and 3 Gy). Fifty cells were analyzed per slide with a semiautomatic imaging system. Data from five independent experiments were transformed to natural logarithms and fitted using a multiple linear regression analysis. Irradiations with the different photon energies were performed simultaneously for each experiment to minimize interexperimental variation. Blood from only one male and one female was used. The interexperimental variation and the influence of donor gender were negligible. In addition, repair kinetics and residual DNA damage after exposure to a dose of 3 Gy were evaluated in three independent experiments for different repair times (10, 20, 30 and 60 min). Data for the fraction of remaining damage were fitted to the simple function F(d) = A/(t + A), where F(d) is the fraction of remaining damage, t is the time allowed for repair, and A (the only fit parameter) is the repair half-time. It was found that the comet assay data did not indicate any difference in the initial radiation damage produced by 29 kV X rays relative to the reference radiation types, 220 kV X rays and the gamma rays of 137Cs and 60Co, either for the total dose range or in the low-dose range. These results are, with some restrictions, consistent with physical examinations and predictions concerning, for example, the assessment of the possible difference in effectiveness in causing strand breaks between mammography X rays and conventional (150-250 kV) X rays, indicating that differences in biological effects must arise through downstream processing of the damage.  相似文献   

3.
5-氮胞苷对贵州小型猪淋巴细胞DNA损伤及修复的影响   总被引:1,自引:0,他引:1  
目的 研究贵州小型猪淋巴细胞对化学物或药物引起的DNA损伤及修复影响的反应。方法 用单细胞凝胶电泳技术检测比较 5 氮胞苷对PHA刺激和未刺激淋巴细胞的DNA损伤及其修复过程。结果  5 氮胞苷引起未刺激淋巴细胞明显的DNA泳动 (彗星尾 ) ,经修复孵育 2h后 ,DNA泳动与孵育前比较无显著差异 ,而 5 氮胞苷引起的刺激细胞DNA泳动经 2h修复孵育后与孵育前比较显著减少。结论  5 氮胞苷引起贵州小型猪未刺激淋巴细胞DNA损伤经 2h孵育未能修复 ,而刺激细胞的DNA损伤明显修复。  相似文献   

4.
The comet assay is a rapid, sensitive and inexpensive method for measuring DNA strand breaks. The comet assay has advantages over other DNA damage methods, such as sister chromatid exchange, alkali elution and micronucleus assay, because of its high sensitivity and that DNA strand breaks are determined in individual cells. This review describes a number of studies that used the comet assay to determine DNA strand breaks in aquatic animals exposed to genotoxicants both in vitro and in vivo, including assessment of DNA damage in aquatic animals collected from contaminated sites. One difficulty of using the comet assay in environmental work is that of comparing results from studies that used different methods, such as empirical scoring or comet tail lengths. There seems to be a consensus in more recent studies to use both the intensity of the tail and the length of the tail, i.e. DNA tail moment, percentage of DNA in the tail. The comet assay has been used to assess DNA repair and apoptosis in aquatic animals and modifications of the comet assay have allowed the detection of specific DNA lesions. There have been some recent studies to link DNA strand breaks in aquatic animals to effects on the immune system, reproduction, growth, and population dynamics. Further work is required before the comet assay can be used as a standard bio-indicator in aquatic environments, including standardization of methods (such as ASTM method E2186-02a) and measurements.  相似文献   

5.
The capacity of an individual to process DNA damage is considered a crucial factor in carcinogenesis. The comet assay is a phenotypic measure of the combined effects of sensitivity to a mutagen exposure and repair capacity. In this paper, we evaluate the association of the DNA repair kinetics, as measured by the comet assay, with prostate cancer risk. In a pilot study of 55 men with prostate cancer, 53 men without the disease, and 71 men free of cancer at biopsy, we investigated the association of DNA damage with prostate cancer risk at early (0-15 min) and later (15-45 min) stages following gamma-radiation exposure. Although residual damage within 45 min was the same for all groups (65% of DNA in comet tail disappeared), prostate cancer cases had a slower first phase (38% vs. 41%) and faster second phase (27% vs. 22%) of the repair response compared to controls. When subjects were categorized into quartiles, according to efficiency of repairing DNA damage, high repair-efficiency within the first 15 min after exposure was not associated with prostate cancer risk while higher at the 15-45 min period was associated with increased risk (OR for highest-to-lowest quartiles=3.24, 95% CI=0.98-10.66, p-trend=0.04). Despite limited sample size, our data suggest that DNA repair kinetics marginally differ between prostate cancer cases and controls. This small difference could be associated with differential responses to DNA damage among susceptible individuals.  相似文献   

6.
Comet assay has been used to estimate cancer risk by quantification of DNA damage and repair in response to mutagen challenge. Our goal was to adopt best practices for the alkaline comet assay to measure DNA repair capacity of white blood cells in whole blood of patients with squamous cell carcinoma of the head and neck (HNSCC). The results show that initial damage by 10 Gy of gamma radiation expressed as percent DNA in comet tail was higher in stimulated lymphocytes (61.1+/-11.8) compared to whole blood (43.0+/-12.1) but subsequent repair was similar with comet tail of approximately 20% at 15 min and 13% at 45 min after exposure. Exposure of whole blood embedded in agarose from 5 to 10 Gy gamma radiation was followed by an approximately 70% repair of the DNA damage within 45 min with a faster repair phase in the first 15 min. Variability of the measurement was lower within repeated measurements of the same person compared to measurement of different healthy individuals. The repair during first 15 min was slower (p=0.01) in ex-/non-smokers (41.0+/-2.1%) compared to smokers (50.3+/-2.7%). This phase of repair was also slower (p=0.02) in HNSCC patients (36.8+/-2.1%) compared to controls matched on age and smoking (46.4+/-3.0%). The results of this pilot study suggest that quantification of repair in whole blood following a gamma radiation challenge is feasible. Additional method optimization would be helpful to improve the assay for a large population screening.  相似文献   

7.
Assessment of DNA repair capacity (DRC) upon ex vivo challenge of peripheral blood mononuclear cells (PBMC) with oxidative damage inducing agents, as evaluated by the comet assay, is widely used as biomarker to assess the antioxidant status in human studies. Here, the alkaline comet assay was now optimized for easy and time saving detection of repair capacity upon oxidative stress-induced DNA damage using the DNA polymerase inhibitor aphidicolin (APC) to block repair of hydrogen peroxide (H2O2) induced DNA damage. Addition of a DMSO-containing DNA damage stop solution was found suitable to replace washing steps for H2O2 removal before APC block. Cell treatment with APC at 6 μM did not impact baseline DNA damage but could reliably block DNA repair after H2O2 challenge in both fresh and cryopreserved samples thus omitting the use of a starting time point control. Under the conditions used, frozen cells, with or without an additional 4 h rest, showed the same repair capacity as their fresh counterpart. The intra assay coefficient of variation (CV) was 3.3%. To provide proof of principle, the modified assay was applied to cryopreserved PBMC from 19 participants of a short-term Brassica diet intervention study investigating potential health promoting effects of the food intervention. Then, a 33% increase in DRC (p ≤ 0.01) could be shown in samples after intervention (mean ± SD: 5.82 ± 1) as compared to baseline (mean ± SD: 4.38 ± 1.21). Individual samples from baseline and intervention showed an inter-individual CV of 27.65% (baseline) and 17.26% (intervention). Taken together this modified comet assay protocol allows the facilitated detection of DNA repair in fresh or cryopreserved human PBMC samples with a good sensitivity and reliability and could be useful in human studies addressing the antioxidant status and repair capacity of PBMC.  相似文献   

8.
Variation in the detection, signaling, and repair of DNA damage contributes to human cancer risk. To assess capacity to modulate endogenous DNA damage among radiologic technologists who had been diagnosed with breast cancer and another malignancy (breast-other, n=42), early-onset breast cancer (early-onset, age or=75% versus below the median, age-adjusted) was most consistently associated with the highest odds ratios in the breast-other, early-onset, and thyroid cancer groups (with risk increased 10-, 5- or 19-fold, respectively, with wide confidence intervals) and decreased risk among the hyper-normal group. For the other three comet measures, risk of breast-other was elevated approximately three-fold. Risk of early-onset breast cancer was mixed and risk of thyroid cancer ranged from null to a two-fold increase. The hyper-normal group showed decreased odds ratios for tail DNA and OTM, but not CDM. DNA damage, as estimated by all comet measures, was relatively unaffected by survival time, reproductive factors, and prior radiation treatment. We detected a continuum of endogenous DNA damage that was highest among cancer cases, less in controls, and suggestively lowest in hyper-normal individuals. Measuring this DNA damage phenotype may contribute to the identification of susceptible sub-groups. Our observations require replication in a prospective study with a large number of pre-diagnostic samples.  相似文献   

9.
The comet assay was performed to elucidate the linearity of calibration curves and detection limits for DNA damage in multiple organs of whole body X-irradiated mice, and rates of reduction in DNA damage by DNA repair during the irradiation period were estimated in the respective organs by comparing the rates of increase in DNA damage at different absorbed dose rates of X-rays. Of the assay parameters, tail length and the percentage DNA in the tail showed a higher sensitivity to DNA damage in most organs than Olive tail moment. Data at the higher absorbed dose rates (2.22 or 1.44 Gy/min) showed good correlations between absorbed doses and these two parameters, with correlation coefficients of more than 0.7 in many organs. However, this assay had difficulty detecting DNA damage at the lower absorption dose rate (0.72 Gy/min). The estimated rates of increase in DNA damage and those of DNA repair during the irradiation period in the respective organs suggested differences in the radiosensitivity of nuclear DNA and DNA repair capacity among organs. Our results indicated that absorbed dose rates of 1.0-1.3 Gy/min or greater were needed to induce detectable DNA damages by the comet assay in many organs.  相似文献   

10.
The Comet assay (single cell gel electrophoresis assay) measures DNA strand breaks in individual cells. In the assay cells are embedded in agarose, lysed, and electrophoresed under low voltage, allowing migration of damaged DNA. The DNA is stained and subsequently viewed with an epifluorescent microscope. If DNA damage has occurred the electrophoresed DNA fragments appear as a diffuse tail behind the nucleus known as a "comet". Many computer-aided analysis systems are currently in use to quantify the amount of DNA damage that is represented by a comet image. Here, we present a novel method of analysis known as "tail profile". This method of analysis provides several advantages over currently employed methods, which rely primarily on the "tail moment" method of analysis. We compared the amount of DNA damage reported from both the tail profile and tail moment methods of analysis and observed a 26% (P<0.0001) increase in damage detected by tail profile across the 10-25 microm range of tail length, where the majority of the relevant comet data is concentrated. We further report that this increase in sensitivity is not only limited to assessing DNA damage, but also to gathering data from DNA repair assays. Furthermore, we demonstrate increased functionality and extended data analysis capabilities with the use of a compressed collection of images called a "comet chip" and through a visual representation of data called a "profile plot". Use of the custom macros enabled us to detect an unexpected characteristic of the electrophoretic profile, giving us novel insight into the nature of comet analysis. In addition to the increased analytical sensitivity proffered by this system, the tail profile macros are upgradeable and platform independent.  相似文献   

11.
The comet assay was performed to elucidate the linearity of calibration curves and detection limits for DNA damage in multiple organs of whole body X-irradiated mice, and rates of reduction in DNA damage by DNA repair during the irradiation period were estimated in the respective organs by comparing the rates of increase in DNA damage at different absorbed dose rates of X-rays. Of the assay parameters, tail length and the percentage DNA in the tail showed a higher sensitivity to DNA damage in most organs than Olive tail moment. Data at the higher absorbed dose rates (2.22 or 1.44 Gy/min) showed good correlations between absorbed doses and these two parameters, with correlation coefficients of more than 0.7 in many organs. However, this assay had difficulty detecting DNA damage at the lower absorption dose rate (0.72 Gy/min). The estimated rates of increase in DNA damage and those of DNA repair during the irradiation period in the respective organs suggested differences in the radiosensitivity of nuclear DNA and DNA repair capacity among organs. Our results indicated that absorbed dose rates of 1.0–1.3 Gy/min or greater were needed to induce detectable DNA damages by the comet assay in many organs.  相似文献   

12.
A number of drugs target the DNA repair pathways and induce cell kill by creating DNA damage. Thus, processes to directly measure DNA damage have been extensively evaluated. Traditional methods are time consuming, expensive, resource intensive and require replicating cells. In contrast, the comet assay, a single cell gel electrophoresis assay, is a faster, non-invasive, inexpensive, direct and sensitive measure of DNA damage and repair. All forms of DNA damage as well as DNA repair can be visualized at the single cell level using this powerful technique.The principle underlying the comet assay is that intact DNA is highly ordered whereas DNA damage disrupts this organization. The damaged DNA seeps into the agarose matrix and when subjected to an electric field, the negatively charged DNA migrates towards the cathode which is positively charged. The large undamaged DNA strands are not able to migrate far from the nucleus. DNA damage creates smaller DNA fragments which travel farther than the intact DNA. Comet Assay, an image analysis software, measures and compares the overall fluorescent intensity of the DNA in the nucleus with DNA that has migrated out of the nucleus. Fluorescent signal from the migrated DNA is proportional to DNA damage. Longer brighter DNA tail signifies increased DNA damage. Some of the parameters that are measured are tail moment which is a measure of both the amount of DNA and distribution of DNA in the tail, tail length and percentage of DNA in the tail. This assay allows to measure DNA repair as well since resolution of DNA damage signifies repair has taken place. The limit of sensitivity is approximately 50 strand breaks per diploid mammalian cell 1,2. Cells treated with any DNA damaging agents, such as etoposide, may be used as a positive control. Thus the comet assay is a quick and effective procedure to measure DNA damage.  相似文献   

13.
14.
The alkaline single-cell gel electrophoresis (comet) assay can be combined with fluorescence in situ hybridization (FISH) methodology to investigate the localization of specific gene domains within an individual cell. The position of the fluorescent hybridization spots in the comet head or tail indicates whether the sequence of interest lies within or in the vicinity of a damaged region of DNA. In this study, we used the comet-FISH assay to examine initial DNA damage and subsequent repair in the TP53 gene region of RT4 and RT112 bladder carcinoma cells after 5 Gy gamma irradiation. In addition to standard comet parameter measurements, the number and location of TP53 hybridization spots within each comet was recorded at each repair time. The results indicate that the rate of repair of the TP53 gene region was fastest during the first 15 min after damage in both cell lines. When compared to overall genomic repair, the repair of the TP53 gene region was observed to be significantly faster during the first 15 min and thereafter followed a rate similar to that for the overall genome. The data indicate that the TP53 domain in RT4 and RT112 cells is repaired rapidly after gamma irradiation. Furthermore, this repair may be preferential compared to the repair of overall genomic DNA, which gives a measure of the average DNA repair response of the whole genome. We suggest that the comet-FISH assay has considerable potential in the study of gene-specific repair after DNA damage.  相似文献   

15.
Aoyama K  Iwahori K  Miyata N 《Mutation research》2003,538(1-2):155-162
Alkaline single-cell gel electrophoresis (comet assay) enables sensitive detection of DNA damage in eukaryotic cells induced by genotoxic agents. We performed a comet assay of unicellular green alga Euglena gracilis that was exposed to genotoxic chemicals, 1-methyl-3-nitro-1-nitrosoguanidine (MNNG), benzo[a]pyrene (BAP), mitomycin C (MMC) and actinomycin D (AMD). Tail length and tail moment in migrated DNA were measured as indications of DNA damage. MNNG and BAP were found to cause concentration-dependent increases in DNA damage. The responses were more sensitive than those of human lymphocytes under the same treatment conditions. MMC and AMD showed no positive response, as reported elsewhere. The comet assays performed at specified times after treatment revealed that the DNA damaged by MNNG and gamma-ray irradiation was repaired during the initial 1h. The results clearly show that the comet assay is useful for evaluating chemically-induced DNA damage and repair in E. gracilis. Given the ease of culturing and handling E. gracilis as well as its sensitivity, the comet assay of this alga would undoubtedly prove to be a useful tool for testing the genotoxicity of chemicals and monitoring of environmental pollution.  相似文献   

16.
Liu X  Zhao J  Zheng R 《Mutation research》2003,539(1-2):1-8
The purpose of this study was to assess DNA damage of tumor-associated lymphocytes (TALs) in malignant pleural effusion (MPE), the total antioxidant capacity (TAC) of plasma and MPE from patients with carcinoma, and DNA repair effect of melatonin. TAC of plasma was measured in 28 cancer patients with MPE and in 33 healthy persons, and also TAC of MPE supernatant was measured in these patients. DNA damages of peripheral blood mononuclear cells (PBMCs) and of TALs were assessed using comet assay. The TAC of plasma was remarkably lower in cancer patients (8.41+/-1.78 U/ml) than that in healthy persons (10.52+/-1.64 U/ml, P<0.001). The TAC of MPE supernatant (6.34+/-1.57 U/ml) was significantly lower than that of plasma in cancer patients (8.41+/-1.78 U/ml, P<0.001). The comet percentage of PBMCs was higher in cancer patients (16.8+/-7.9) than that in healthy persons (10.4+/-4.9, P<0.01). Within cancer patients, the comet percentage of TALs (41.9+/-11.7) was significantly higher than that of PBMCs (16.8+/-7.9, P<0.001). A negative correlation was observed between the TAC of MPE supernatant and the comet percentage of TALs in patients (r=-0.538, P<0.01). After treatment with melatonin, comet percentage of TALs declined significantly from 42.6+/-12.8 to 27.1+/-9.9 (P<0.001). These data show that lower TAC of MPE supernatant may be related to higher degree of DNA damage of TALs and that melatonin may facilitate the repair of the damaged DNA.  相似文献   

17.
The comet assay for DNA damage and repair   总被引:9,自引:0,他引:9  
The comet assay (single-cell gel electrophoresis) is a simple method for measuring deoxyribonucleic acid (DNA) strand breaks in eukaryotic cells. Cells embedded in agarose on a microscope slide are lysed with detergent and high salt to form nucleoids containing supercoiled loops of DNA linked to the nuclear matrix. Electrophoresis at high pH results in structures resembling comets, observed by fluorescence microscopy; the intensity of the comet tail relative to the head reflects the number of DNA breaks. The likely basis for this is that loops containing a break lose their supercoiling and become free to extend toward the anode. The assay has applications in testing novel chemicals for genotoxicity, monitoring environmental contamination with genotoxins, human biomonitoring and molecular epidemiology, and fundamental research in DNA damage and repair. The sensitivity and specificity of the assay are greatly enhanced if the nucleoids are incubated with bacterial repair endonucleases that recognize specific kinds of damage in the DNA and convert lesions to DNA breaks, increasing the amount of DNA in the comet tail. DNA repair can be monitored by incubating cells after treatment with damaging agent and measuring the damage remaining at intervals. Alternatively, the repair activity in a cell extract can be measured by incubating it with nucleoids containing specific damage.  相似文献   

18.
Two organophosphorus (OP) pesticides (chloropyriphos and acephate) and cyclophosphamide (CP) (positive control) were tested for their ability to induce in vivo genotoxic effect in leucocytes of Swiss albino mice using the single cell gel electrophoresis assay or comet assay. The mice were administered orally with doses ranging from 0.28 to 8.96 mg/kg body weight (b. wt.) of chloropyriphos and 12.25 to 392.00 mg/kg b.wt. of acephate. The assay was performed on whole blood at 24, 48, 72 and 96 h. A significant increase in mean comet tail length indicating DNA damage was observed at 24h post-treatment (P<0.05) with both pesticides in comparison to control. The damage was dose related. The mean comet tail length revealed a clear dose dependent increase. From 48 h post-treatment, a gradual decrease in mean tail length was noted. By 96 h of post-treatment the mean comet tail length reached control levels indicating repair of the damaged DNA. From the study it can be concluded that the comet assay is a sensitive assay for the detection of genotoxicity caused by pesticides.  相似文献   

19.
The comet assay: a method to measure DNA damage in individual cells   总被引:4,自引:0,他引:4  
We present a procedure for the comet assay, a gel electrophoresis-based method that can be used to measure DNA damage in individual eukaryotic cells. It is versatile, relatively simple to perform and sensitive. Although most investigations make use of its ability to measure DNA single-strand breaks, modifications to the method allow detection of DNA double-strand breaks, cross-links, base damage and apoptotic nuclei. The limit of sensitivity is approximately 50 strand breaks per diploid mammalian cell. DNA damage and its repair in single-cell suspensions prepared from yeast, protozoa, plants, invertebrates and mammals can also be studied using this assay. Originally developed to measure variation in DNA damage and repair capacity within a population of mammalian cells, applications of the comet assay now range from human and sentinel animal biomonitoring (e.g., DNA damage in earthworms crawling through toxic waste sites) to measurement of DNA damage in specific genomic sequences. This protocol can be completed in fewer than 24 h.  相似文献   

20.
Human peripheral blood samples collected from three healthy human volunteers were exposed in vitro to pulsed-wave 2450 MHz radiofrequency (RF) radiation for 2 h. The RF radiation was generated with a net forward power of 21 W and transmitted from a standard gain rectangular antenna horn in a vertically downward direction. The average power density at the position of the cells in the flask was 5 mW/cm(2). The mean specific absorption rate, calculated by finite difference time domain analysis, was 2.135 (+/-0.005 SE) W/kg. Aliquots of whole blood that were sham-exposed or exposed in vitro to 50 cGy of ionizing radiation from a (137)Cs gamma-ray source were used as controls. The lymphocytes were examined to determine the extent of primary DNA damage (single-strand breaks and alkali-labile lesions) using the alkaline comet assay with three different slide-processing schedules. The assay was performed on the cells immediately after the exposures and at 4 h after incubation of the exposed blood at 37 +/- 1 degrees C to allow time for rejoining of any strand breaks present immediately after exposure, i.e. to assess the capacity of the lymphocytes to repair this type of DNA damage. At either time, the data indicated no significant differences between RF-radiation- and sham-exposed lymphocytes with respect to the comet tail length, fluorescence intensity of the migrated DNA in the tail, and tail moment. The conclusions were similar for each of the three different comet assay slide-processing schedules examined. In contrast, the response of lymphocytes exposed to ionizing radiation was significantly different from RF-radiation- and sham-exposed cells. Thus, under the experimental conditions tested, there is no evidence for induction of DNA single-strand breaks and alkali-labile lesions in human blood lymphocytes exposed in vitro to pulsed-wave 2450 MHz radiofrequency radiation, either immediately or at 4 h after exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号