首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vitamin D3 at low concentration (10−9 M) inhibited the growth of Phaseolus vulgaris L. (cv. Contrancha) roots in vitro as measured by elongation (14 h) and [3H]-leucine incorporation into protein (2 h), and increased their labelling with 45Ca2+ (2 h). Cycloheximide and puromycin (50 u.M) blocked vitamin D3 stimulation of root 45Ca2+ labelling, indicating that it is mediated by de novo protein synthesis. The calcium ionophore X-537A (10−5JW) induced similar changes both in root elongation and 45Ca2+ uptake (14 h). This may indicate that the inhibitory effects of the sterol on root growth are mediated by changes in Ca2+ fluxes. However, this interpretation should be further strengthened by additional studies as the ionophore may have acted on root growth, affecting physiological processes other than Ca2+ transport.  相似文献   

2.
Solanum elaeagnifolium Cav. fruits contain high concentrations of steroidal saponins. Treatment of 3-day-old clover seedlings with aqueous fruit extracts modified Ca2+ uptake without significantly altering K+ and H2PO4 uptake. The extracts increased Ca2+ uptake in the concentration range of 0.2 to 20 m M Ca2+. Uptake curves could be represented by two phases. In the lower phase (0.2-1.0 m M Ca2+), this change could be related to an increase in Vmax. Pretreatment of seedlings with saponin extracts significantly reduced ATP-dependent Ca2+ uptake and Ca2+-dependent ATPase activity in a fraction isolated from root homogenates by centrifugation at 1500 g for 15 min. Saponins purified from S. eleagnifolium extracts by thin-layer chromatography modified in vitro the Ca2+-ATPase activity of this fraction, indicating that the steroid may act directly on Ca2+ transport across membranes.  相似文献   

3.
A rapid assay for aluminium phytotoxicity at submicromolar concentrations   总被引:1,自引:0,他引:1  
Investigations of Al phytotoxicity, including the identification of the Al species responsible for toxicity, require a rapid assay procedure employing very low concentrations of Al and a chemically simple rooting medium. Root elongation in newly germinated red clover ( Trifolium pratense L. cv. Kenland) was inhibited by submicromolar concentrations of Al. Ca2+ at concentrations of at least 0.2 m M was essential for optimal elongation in control seedlings. Ca2+ also relieved Al toxicity with the net effect that maximum reduction of elongation by 1 μ M Al was achieved at 0.2 m M Ca2+. Elongation in control seedlings was at least 90% of maximum from pH 4.5 to 5.7. Increases in pH relieved Al toxicity so that maximum sensitivity to 1 μ M Al occurred at pH 4.7. As a consequence of these experiments and other considerations we chose for our basic assay a medium composed of 0.2 m M CaSO4 adjusted to pH 4.5 with H2SO4, variously supplemented with Al2(SO4)3.
Day-old seedlings were incubated in this aerated medium in the dark at 23°C for one day. No additions of other solutes increased the sensitivity of the assay, but amelioration of Al toxicity was effected by Mg2+, F-, phosphate and citrate. Increases in ionic strength per se had comparatively little effect on the toxic effects of Al. Two barley cultivars ( Hordeum vulgare L. cv. Dayton and Kearney) and two wheat cultivars ( Triticum aestivum L. cv. Hart and Thorne) known to differ in sensitivity to Al were reliably separated at submicromolar Al concentrations by the assay procedure, which was slightly modified. Suggestions for the improvement of the assay and for applications to future research are offered.  相似文献   

4.
A low fluence of ultraviolet radiation (UV) causes cultured cells of Rosa damascena Mill cv. Gloire de Guilan to lose intracellular K+. This effect required the presence of Ca2+ in the medium. A reduction in the concentration of free Ca2+ to 10−5 M with ethyleneglycol-bis-(β-aminoethyl-ether)-N.N.N',N'-tetraacetic acid (EGTA) buffer inhibited the UV-stimulated efflux; this was correlated with a discharge of the membrane potential and a stimulation of the leakage of K+ from unirradiated cells. All the same effects were seen with La3+ at 0.2 m M. At 0.02 m M La3+, the UV-stimulated efflux of K+ was blocked without concomitant effects on the membrane potential or K+ efflux from control cells. It is suggested that removal of Ca2+ blocks or masks the UV-induced leakage of K+ by destabilizing the plasma membrane. In addition, La3+ may specifically inhibit the UV-stimulated opening of K+ or anion channels.  相似文献   

5.
Abstract: In adrenal chromaffin cells, depolarization-evoked Ca2+ influx and catecholamine release are partially blocked by blockers of L-type voltage-sensitive Ca2+ channels. We have now evaluated the sensitivity of the dihydropyridine-resistant components of Ca2+ influx and catecholamine release to a toxin fraction (FTX) from the funnel-web spider poison, which is known to block P-type channels in mammalian neurons. FTX (1:4,000 dilution, with respect to the original fraction) inhibited K+-depolarization-induced Ca2+ influx by 50%, as monitored with fura-2, whereas nitrendipine (0.1–1 μ M ) and FTX (3:3), a synthetic FTX analogue (1 m M ), blocked the [Ca2+]i transients by 35 and 30%, respectively. When tested together, FTX and nitrendipine reduced the [Ca2+]i transients by 70%. FTX or nitrendipine reduced adrenaline and noradrenaline release by ∼80 and 70%, respectively, but both substances together abolished the K+-evoked catecholamine release, as measured by HPLC. The ω-conotoxin GVIA (0.5 μ M ) was without effect on K+-stimulated 45Ca2+ uptake. Our results indicate that FTX blocks dihydropyridine- and ω-conotoxin-insensitive Ca2+ channels that, together with L-type voltage-sensitive Ca2+ channels, are coupled to catecholamine release.  相似文献   

6.
Uptake and distribution of Ca+, Mg2+ and K2+ were investigated in plants of cucumber ( Cucumis sativus L. var. Cila) which had been cultivated for 12, 19, 32, or 53 days in complete nutrient solution with 1.0 m M Ca2+, 2.0 m M Mg2+ and 2.0 m M K+. The + concentration was about the same in roots and shoots, while the Ca2+ and Mg2+ concentrations were low in roots compared to shoots. The K+ concentration decreased with increasing leaf age, while the Ca2+ and Mg2+ concentrations increased, except in older plants with flowers and fruits, where an increased concentration was found in the youngest leaves. This is discussed in connection with increased indoleacetic acid (IAA) synthesis in the shoot. Excision of leaves at different levels from 21-day-old plants, followed by uptake for 24 h from the nutrient solution on days 22 and 23, resulted in no immediate reduction in Ca2+ (45Ca) uptake. Transport of Ca2+ increased to leaves above and below the excision point and total Ca2+ uptake remained at the same level as for the intact plant. It is suggested that regulation of Ca2+ uptake is primarily achieved in the root while the distribution in the shoot is regulated by the accessability of negative binding sites.  相似文献   

7.
Ethylene production and overall levels of free and conjugated 1-aminocyclopropane-1-carboxylic acid (ACC) were studied in parenchymatous tissues, excised from clmacteric apples ( Malus domestica Borkh. cv. Granny Smith) and infiltrated with an incubation medium containing 0, 1, 10 or 100 m M Ca2+, with or without exogenous ACC (2 m M ). Irrespective of whether exogenous ACC was applied or not, ethylene production was inhibited to the same extent (40%) by an apoplastic effect of 100 m M Ca2+. In the absence of external ACC, the inhibition was associated with an increase in total endogenous ACC and may be related to a reduction in the rate of the last step of ethylene pathway. This suggests that the ethylene-forming enzyme (EFE) is localized in the plasma membrane. Low Ca2+ concentrations (1 m M ) enhanced basal ethylene synthesis due to influx of Ca2+ into the cytosol, while overall concentrations of ACC in the tissue decreased. However, 1 m M Ca2+ did not stimulate ACC-dependent ethylene formation. Thus, Ca2+ influx may stimulate the translocation of endogenous ACC from synthesis or storage compartment (s) to reactive site(s) of the plasma membrane. The concentration of 10 m M Ca2+ had no effect on basal ethylene production and appears to represent a balance point between the stimulating and inhibiting effects of 1 and 100 m M Ca2+, respectively, Furthermore, the charge-times of exogenous ACC observed with 0, 1 and 10 m M Ca2+ suggest that EFE is located on the inner side of the plasma membrane.  相似文献   

8.
Abstract: The Na+/Ca2+ exchanger is an important element in the maintenance of calcium homeostasis in bovine chromaffin cells. The Na+/Ca2+ exchanger from other cell types has been extensively studied, but little is known about its regulation in the cell. We have investigated the role of reversible protein phosphorylation in the activity of the Na+/Ca2+ exchanger of these cells. Cells treated with 1 m M dibutyryl cyclic AMP (dbcAMP), 1 µ M phorbol 12,13-dibutyrate, 1 µ M okadaic acid, or 100 n M calyculin A showed lowered Na+/Ca2+ exchange activity and prolonged cytosolic Ca2+ transients caused by depolarization. A combination of 10 n M okadaic acid and 1 µ M dbcAMP synergistically inhibited Na+/Ca2+ exchange activity. Conversely, 50 µ M 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine, a protein kinase inhibitor, enhanced Na+/Ca2+ exchange activity. Moreover, we used cyclic AMP-dependent protein kinase and calcium phospholipid-dependent protein kinase catalytic subunits to phosphorylate isolated membrane vesicles and found that the Na+/Ca2+ exchange activity was inhibited by this treatment. These results indicate that reversible protein phosphorylation modulates the activity of the Na+/Ca2+ exchanger and suggest that modulation of the exchanger may play a role in the regulation of secretion.  相似文献   

9.
Hasenstein, K. H. and Evans, M. L. 1988. The influence of calcium and pH on growth in primary roots of Zea mays. - Physiol. Plant. 72: 466–470.
We investigated the interaction of Ca2+ and pH on root elongation in Zea mays L. cv. B73 × Missouri 17 and cv. Merit. Seedlings were raised to contain high levels of Ca2+ (HC, imbibed and raised in 10 m M CaCl2) or low levels of Ca2+ (LC, imbibed and raised in distilled water). In HC roots, lowering the pH (5 m M MES/Tris) from 6.5 to 4.5 resulted in strong, long-lasting growth promotion. Surprisingly, increasing the pH from 6.5 to 8.5 also resulted in strong growth promotion. In LC roots acidification of the medium (pH 6.5 to 4.5) resulted in transient growth stimulation followed by a gradual decline in the growth rate toward zero. Exposure of LC roots to high pH (pH shift from 6.5 to 8.5) also promoted growth. Addition of EGTA resulted in strong growth promotion in both LC and HC roots. The ability of EGTA to stimulate growth appeared not to be related to H+ release from EGTA upon Ca2+ chelation since, 1) LC roots showed a strong and prolonged response to EGTA, but only a transient response to acid pH, and 2) promotion of growth by EGTA was observed in strongly buffered solutions. We also examined the pH dependence of the release of 45Ca2+ from roots of 3-day-old seedlings grown from grains imbibed in 45Ca2+. Release of 45Ca2+ from the root into agar blocks placed on the root surface was greater the more acidic the pH of the blocks. The results indicate that Ca2+ may be necessary for the acid growth response in roots.  相似文献   

10.
Abstract: Recently we have shown that 4-aminopyridine (4-AP), a drug known to enhance transmitter release, stimulates the phosphorylation of the protein kinase C substrate B-50 (GAP-43) in rat brain synaptosomes and that this effect is dependent on the presence of extracellular Ca2+. Hence, we were interested in the relationship between changes induced by 4-AP in the intracellular free Ca2+ concentration ([Ca2+]i) and B-50 phosphorylation in synaptosomes. 4-AP (100 μ M ) elevates the [Ca2+]i (as determined with fura-2) to approximately the same extent as depolarization with 30 m M K+ (from an initial resting level of 240 n M to ∼480 n M after treatment). However, the underlying mechanisms appear to be different: In the presence of 4-AP, depolarization with K+ still evoked an increase in [Ca2+]i, which was additive to the elevation caused by 4-AP. Several Ca2+ channel antagonists (CdCl2, LaCl3, and diphenylhydantoin) inhibited the increase in B-50 phosphorylation by 4-AP. It is interesting that the increase in [Ca2+]i and the increase in B-50 phosphorylation by 4-AP were attenuated by tetrodotoxin, a finding pointing to a possible involvement of Na+ channels in this action. These results suggest that 4-AP (indirectly) stimulates both Ca2+ influx and B-50 phosphorylation through voltage-dependent channels by a mechanism dependent on Na+ channel activity.  相似文献   

11.
Abstract: Prior treatment of NG108-15 cells with phosphatase inhibitors including okadaic acid and calyculin A inhibited the elevation of cytosolic Ca2+ concentration ([Ca2+]i) induced by bradykinin by ∼63%. This inhibition was dependent on the concentration of okadaic acid with an IC50 of 0.15 n M . Okadaic acid treatment only lowered the maximal response of [Ca2+]i increase and had no effect on the EC50 value for bradykinin regardless of the presence of extracellular Ca2+. Neither the capacity of 45Ca2+ accumulation within intracellular nonmitochondrial Ca2+ stores nor the magnitude of [Ca2+]i increase induced by thapsigargin was reduced by the treatment of okadaic acid. In contrast, the same phosphatase inhibitor treatment inhibited the bradykinin-evoked inositol 1,4,5-trisphosphate (IP3) generation, the Mn2+ influx, and the capacity of mitochondrial Ca2+ accumulation. Furthermore, the sensitivity of IP3 in the Ca2+ release was suppressed by okadaic acid pretreatment. Our results suggest that the reduction of bradykinin-induced [Ca2+]i rise by the promotion of protein phosphorylation was attributed to the reduced activity of phospholipase C, the decreased sensitivity to IP3, and the slowed rate of Ca2+ influx. Thus, phosphorylation plays a role in bradykinin-sensitive Ca2+ signaling cascade in NG108-15 cells.  相似文献   

12.
Abstract: We studied effects of Ca2+ in the incubation medium on [3H]dopamine ([3H]DA) uptake by rat striatal synaptosomes. Both the duration of the preincubation period with Ca2+ (0–30 min) and Ca2+ concentration (0–10 m M ) in Krebs-Ringer medium affected [3H]DA uptake by the synaptosomes. The increase was maximal at a concentration of 1 m M Ca2+ after a 10-min preincubation (2.4 times larger than the uptake measured without preincubation), which reflected an increase in V max of the [3H]DA uptake process. On the other hand, [3H]DA uptake decreased rapidly after addition of ionomycin in the presence of 1 m M Ca2+. The Ca2+-dependent enhancement of the uptake was still maintained after washing synaptosomes with Ca2+-free medium following preincubation with 1 m M Ca2+. Protein kinase C inhibitors did not affect apparently Ca2+-dependent enhancement of the uptake, whereas 1-[ N,O -bis(1,5-isoquinolinesulfonyl)- N -methyl- l -tyrosyl]-4-phenylpiperazine (KN-62; a Ca2+/calmodulin-dependent kinase II inhibitor) and wortmannin (a myosin light chain kinase inhibitor) significantly reduced it. Inhibitory effects of KN-62 and wortmannin appeared to be additive. N -(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7; a calmodulin antagonist) also remarkably inhibited the enhancement. These results suggest that Ca2+-dependent enhancement of [3H]DA uptake is mediated by activation of calmodulin-dependent protein kinases.  相似文献   

13.
Purified plasmalemma vesicles were isolated in the presence of 250 m M sucrose from roots of 14-day-old seedlings of winter wheat ( Triticum aestivum L. Martonvásári-8) by phase partitioning of salt-washed microsomal fractions in a Dextran-polyethylene glycol two-phase system, and both Mg2+- and Ca2+-ATPase activities were detected. Orthovanadate-sensitive Mg2+-ATPase activity associated with the inside of right side-out plasmalemma (PM) vesicles (latency 98%) was inhibited 76% by 0.3 m M Ca2+, Ca2+-dependent ATPase activity located partly on the inside and partly on the outside of plasmalemma vesicles (latency 47%) was not affected by Mg2+.
Mg2+-ATPase activity was inhibited by 68% and inhibition of Mg2+ activation by 0.3 m M Ca2+ partly disappeared in the presence of 10 p M tentoxin, a fungal phytotoxin. Mg2+-ATPase activity remained inhibited up to 10 n M tentoxin while at 1 μ M tentoxin Mg2+ activation was as high as without tentoxin. K+-stimulation and vanadate inhibition was increased and decreased, respectively, by 100 p M -10 n M tentoxin. Ca2+-dependent ATPase activity was continuously increased by 1 p M -10 n M tentoxin, but at 1 μ M tentoxin the stimulation disappeared. The effects of p M tentoxin on plasma-lemma Mg2+-ATPase are discussed in relation to its influence on K+ transport in wheat seedlings.  相似文献   

14.
Abstract: A charybdotoxin-sensitive, Ca2+-activated K+ channel was identified in cultured rat brain capillary endothelial cells by using conventional single-channel recording techniques and 86Rb+-influx and efflux experiments. Channel activity was dependent on the presence of Ca2+ on the cytosolic face of the membrane with a threshold concentration of 100 n M . It was inhibited by charybdotoxin (IC50 30 n M ) and quinine (IC50 0.1 m M ) but not by apamin. K(Ca) channels showed unusual inward rectifying properties under asymmetrical ionic conditions. They were activated by endothelin-1 (EC50 0.7 n M ) and endothelin-3 (EC50 7–10 n M ). The actions of endothelins were prevented by BQ-123 ( K i = 8 n M ) in a competitive fashion, hence suggesting the involvement of an ETA-receptor subtype. The channel activity was unaffected by cyclic AMP- or cyclic GMP-elevating agents. The possible role of the intermediate conductance, Ca2+-activated K+ channels for mediating K+ movements across the blood-brain barrier is discussed.  相似文献   

15.
Root zone calcium modulates the response of potato plants to heat stress   总被引:1,自引:0,他引:1  
Potato plant growth and development are known to be severely impacted by heat stress. Here plants grown in a chemically inert medium of 1 : 1 quartzite : perlite (v : v) were subjected to either 35/25°C (stress) or 20/15°C (control) day/night air temperatures and four concentrations of root zone calcium (5, 25, 125 and 600 µ M Ca) for 3 weeks. We report for the first time that potato plant growth under heat stress can persist at specific levels of Ca2+ in the root zone and that the Ca2+ level required for growth under heat stress exceeds that required for growth under normal temperatures. We also provide strong, initial evidence that the ability of high Ca2+ levels to mitigate heat stress effects results from shifts in meristematic activity. Total foliar mass and leaf area were essentially unaffected by Ca2+ level under control temperatures. Under heat stress, leaf area was reduced to about 5% of the control at 5 and 25 µ M Ca but to only 70% of the control at 125 and 600 µ M Ca. Likewise, total foliar mass was reduced under heat stress to about 30% of the control at 5 and 25 µ M Ca but total foliar mass was greater under heat stress than control conditions at 125 and 600 µ M Ca. This increase at higher Ca2+ concentrations was due primarily to axillary shoot growth. Anatomical studies of leaves grown under heat stress show that cell expansion was impaired by heat stress and this impairment was overcome by increasing root zone calcium levels. These results provide insight into the mechanism by which root zone Ca2+ may modulate plant response to heat stress.  相似文献   

16.
Turgor- dependent membrane permeability in relation to calcium level   总被引:1,自引:0,他引:1  
The relationship between the inhibiting effect of Ca2+ and of low turgor pressure on K+ release from fresh-cut discs of carrot ( Daucus carota var. Nantes) storage tissue was studied. A range of Ca2+ concentrations in the tissue was obtained by adding 0.5 m M EDTA or CaSO4 at different concentrations to the medium. Calcium inhibited K+ release in fully turgid cells (2.5 μmol K+ g−1 h−1 in 0.5 m M EDTA vs 0.4 μmol K+ g−1 h−1 in 10 m M CaSO4). Less turgid cells, obtained by equilibration with 0.2 M mannitol, released K+ at only 30% of the rate of the turgid cells, yet the pattern of K+ release as a function of Ca2+ level was similar in both turgid and non-turgid cells. Removal of calcium by EDTA occasionally injured cell membranes in the fully turgid discs but never in the less turgid ones. In view of the additive effect of Ca2+ and low turgor on K+ release regardless of the treatment order, it is suggested that the two factors exert their effect on membrane permeability independently of each other.  相似文献   

17.
When 1 m M spermidine or spermine was included in an absorption solution which contained 20 m M Na+ and 1 m M Rb+, Na+ influx into excised maize roots ( Zea mays L. cv. Golden Cross Bantam) was reduced. Rb+ influx was reduced in the presence of spermidine and uneffected in the presence of spermine when compared with control solutions. When 1 m M Ca2+ replaced the polyamines, Na+ influx was strongly reduced and Rb+ influx was promoted. Rb+ influx from 1 m M Rb+ solutions which did not contain Na+ was also promoted by 1 m M Ca2+, but was inhibited by 1 m M spermidine. This Ca2+ promotion of Rb+ influx could be reversed by 10 times greater concentration of spermidine in the absorption solution. H+ efflux from excised roots was inhibited by spermidine when compared with Ca2+ or control solutions, however, the plasma membrane ATPase was not inhibited by spermidine. It is concluded that external Ca2+ plays two separate roles in membrane function, only one of which can be substituted for by polyamines. The first role, maintenance of membrane integrity, can be substituted for by spermidine or spermine. The second function, maintenance of the Rb+ transport mechanism, is Ca2+ specific and cannot be substituted for by spermidine or spermine. The results of this study are discussed in terms of electrostatic interactions between the plasma membrane and the Ca2+ or polyamines.  相似文献   

18.
Abstract: Current literature suggests that a massive influx of Ca2+ into the cells of the CNS induces cell damage associated with traumatic brain injury (TBI). Using an in vitro model for stretch-induced cell injury developed by our laboratory, we have investigated the role of extracellular Ca2+ in astrocyte injury. The degree of injury was assessed by measurement of propidium iodide uptake and release of lactate dehydrogenase. Based on results of in vivo models of TBI developed by others, our initial hypothesis was that decreasing extracellular Ca2+ would result in a reduction in astrocyte injury. Quite unexpectedly, our results indicate that decreasing extracellular Ca2+ to levels observed after in vivo TBI increased astrocyte injury. Elevating the extracellular Ca2+ content to twofold above physiological levels (2 m M ) produced a reduction in cell injury. The reduction in injury afforded by Ca2+ could not be mimicked with Ba2+, Mn2+, Zn2+, or Mg2+, suggesting that a Ca2+-specific mechanism is involved. Using 45Ca2+, we demonstrate that injury induces a rapid influx of extracellular Ca2+ into the astrocyte, achieving an elevation in total cell-associated Ca2+ content two- to threefold above basal levels. Pharmacological elevation of intracellular Ca2+ levels with the Ca2+ ionophore A23187 or thapsigargin before injury dramatically reduced astrocyte injury. Our data suggest that, contrary to popular assumptions, an elevation of total cell-associated Ca2+ reduces astrocyte injury produced by a traumatic insult.  相似文献   

19.
The Ca++ and Mg++ contents of embryonic chick heart were studied by atomic absorption spectrophotometry during a period from 48 h of foetal development until 2-3 days post-hatching. The hearts were isolated and incubated for 40 min at 22°C in three different media aerated with 95% 02-5% C02. The media included: normal Ringer's; Ca+-free Ringer's with 3 mM EGTA; and Ca++-free Ringer's with 3 mM EDTA. At 48 h, the tubular myocardium contained 7-3 mM Ca++ per wet weight which decreased rapidly to 1-2 mM by 10 days of development and remained between 0-9 and 1-1 mM until hatching. The Ca++ content paralleled the changes in Na+ content reported earlier. Treatment with excess chelators, EGTA or EDTA, resulted in removal of 65-75% of the Ca++ content throughout development until the time of hatching, when 50% of the Ca++ became firmly bound. In contrast to the results with Ca++, myocardial Mg++ content rose rapidly from an initial value of 3.2 mM at 48 h to 6.7 mM by the 5th day of development, and then gradually declined throughout the remaining foetal development to 4.8 mM 2-3 days post-hatching. The Mg++ contents closely paralleled changes in K+ content during development, which were reported earlier. Treatment with EGTA and EDTA removed 13-22% and 19-28% of the myocardial Mg++, respectively, during development until just prior to hatching, when only 10-12% could be removed by chelation.  相似文献   

20.
The effects of supplemental Ca2+ supply and NaCl salinity on the ionic relations and levels of proline and other amino acids in the primary root of Sorghum bicolor (cv. Hegari) seedlings were investigated. Two days of exposure to 150 m M NaCl resulted in a 50-fold increase in the proline level in the 0–10 mm root tips of seedlings supplied with 5.0 m M Ca2+, but only a 4-fold increase in seedlings with 0.5 m M Ca2+. In contrast to the high levels of proline in the root tip, proline accumulation was only modest in the expanded tissues of the root. The enhancement of proline accumulation in the root tip of salinized seedlings with the Ca2+ supplement may be related to their more favorable tissue K to Na ratio. Thus, elevated Ca2+ may mitigate the NaCl-induced inhibition of S. bicolor root growth via the maintenance of net K to Na selectivity and the enhancement of proline accumulation in the root tip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号