首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In C. elegans, the BH3-only domain protein EGL-1, the Apaf-1 homolog CED-4 and the CED-3 caspase are required for apoptosis induction, whereas the Bcl-2 homolog CED-9 prevents apoptosis. Mammalian B-cell lymphoma 2 (Bcl-2) inhibits apoptosis by preventing the release of the Apaf-1 (apoptotic protease-activating factor 1) activator cytochrome c from mitochondria. In contrast, C. elegans CED-9 is thought to inhibit CED-4 by sequestering it at the outer mitochondrial membrane by direct binding. We show that CED-9 associates with the outer mitochondrial membrane within distinct foci that do not overlap with CED-4, which is predominantly perinuclear and does not localize to mitochondria. CED-4 further accumulates in the perinuclear space in response to proapoptotic stimuli such as ionizing radiation. This increased accumulation depends on EGL-1 and is abrogated in ced-9 gain-of-function mutants. CED-4 accumulation is not sufficient to trigger apoptosis execution, even though it may prime cells for apoptosis. Our results suggest that the cell death protection conferred by CED-9 cannot be solely explained by a direct interaction with CED-4.  相似文献   

2.
In the nematode Caenorhabditis elegans, the cell corpse engulfment proteins CED-2, CED-5, and CED-12 act in the same pathway to regulate the activation of the Rac small GTPase, CED-10, leading to the rearrangement of the actin cytoskeleton for engulfing apoptotic cells. Nevertheless, it is not well understood how these proteins act together. Here we report the crystal structures of the CED-2 protein as determined by X-ray crystallography. The full-length CED-2 protein and its truncated form containing the N-terminal SH2 domain and the first SH3 domain show similar three-dimensional structures. A CED-2 point mutation (F125G) disrupting its interaction with the PXXP motif of CED-5 did not affect its rescuing activity. However, CED-2 was found to interact with the N-terminal region of CED-5. Our findings suggest that CED-2 may regulate cell corpse engulfment by interacting with CED-5 through the N-terminal region rather than the PXXP motif.  相似文献   

3.
A critical accomplishment in the rapidly developing field of regenerative medicine will be the ability to foster repair of neurons severed by injury, disease, or microsurgery. In C. elegans, individual visualized axons can be laser-cut in vivo and neuronal responses to damage can be monitored to decipher genetic requirements for regeneration. With an initial interest in how local environments manage cellular debris, we performed femtosecond laser axotomies in genetic backgrounds lacking cell death gene activities. Unexpectedly, we found that the CED-3 caspase, well known as the core apoptotic cell death executioner, acts in early responses to neuronal injury to promote rapid regeneration of dissociated axons. In ced-3 mutants, initial regenerative outgrowth dynamics are impaired and axon repair through reconnection of the two dissociated ends is delayed. The CED-3 activator, CED-4/Apaf-1, similarly promotes regeneration, but the upstream regulators of apoptosis CED-9/Bcl2 and BH3-domain proteins EGL-1 and CED-13 are not essential. Thus, a novel regulatory mechanism must be utilized to activate core apoptotic proteins for neuronal repair. Since calcium plays a conserved modulatory role in regeneration, we hypothesized calcium might play a critical regulatory role in the CED-3/CED-4 repair pathway. We used the calcium reporter cameleon to track in vivo calcium fluxes in the axotomized neuron. We show that when the endoplasmic reticulum calcium-storing chaperone calreticulin, CRT-1, is deleted, both calcium dynamics and initial regenerative outgrowth are impaired. Genetic data suggest that CED-3, CED-4, and CRT-1 act in the same pathway to promote early events in regeneration and that CED-3 might act downstream of CRT-1, but upstream of the conserved DLK-1 kinase implicated in regeneration across species. This study documents reconstructive roles for proteins known to orchestrate apoptotic death and links previously unconnected observations in the vertebrate literature to suggest a similar pathway may be conserved in higher organisms.  相似文献   

4.
In the nematode Caenorhabditis elegans, the apoptotic machinery is composed of four basic elements: the caspase CED-3, the Apaf-1 homologue CED-4, and the Bcl-2 family members CED-9 and EGL-1. The ced-9(n1950) gain-of-function mutation prevents most, if not all, somatic cell deaths in C. elegans. It encodes a CED-9 protein with a glycine-to-glutamate substitution at position 169, which is located within the highly conserved Bcl-2 homology 1 domain. We performed biochemical analyses with the CED-9G169E protein to gain insight into the mechanism of programmed cell death. We find that CED-9G169E retains the ability to bind both EGL-1 and CED-4, although its affinity for EGL-1 is reduced. In contrast to the behavior of wild-type CED-9, the interaction between CED-9G169E and CED-4 is not disrupted by expression of EGL-1. Furthermore, CED-4 and CED-9G169E co-localizes with EGL-1 to the mitochondria in mammalian cells, and expression of EGL-1 does not induce translocation of CED-4 to the cytosol. Finally, the ability of EGL-1 to promote apoptosis is impaired by the replacement of wild-type CED-9 with CED-9G169E, and this effect is correlated with the inability of EGL-1 to induce the displacement of CED-4 from the CED-9.CED-4 complex. These studies suggest that the release of CED-4 from the CED-9.CED-4 complex is a necessary step for induction of programmed cell death in C. elegans.  相似文献   

5.
We have studied the subcellular localization of pentachlorophenol 4-monooxygenase (PCP4MO) in Sphingobium chlorophenolicum ATCC 39723 during induction by pentachlorophenol (PCP). Using a monoclonal antibody CL6 specific to the native and recombinant PCP4MO, the enzyme was primarily found soluble as determined by immunoblot and ELISA analyses of cellular fractions. However, the enzyme was observed both in the soluble and membrane-bound forms during induction for 2-4 h, suggesting its translocation out from the cytoplasm. Electron microscopy confirmed that PCP4MO was predominantly present in the cytoplasm at 1 h, whereas at 4 h significant amount was detected also in the membrane and periplasm. After 6 h, the majority of PCP4MO was in the periplasm and only small amount was bound to the inner membrane or present in the cytoplasm. The results indicate that after biosynthesis PCP4MO in S. chlorophenolicum is exported via the inner membrane to the final location in the periplasm.  相似文献   

6.
Cytokine-induced apoptosis inhibitor 1 (CIAPIN1) is a newly identified anti-apoptotic molecule. Our previous studies have demonstrated that CIAPIN1 is ubiquitously expressed in normal fetal and adult human tissues and confers multidrug resistance in gastric cancer cells, possibly by upregulating the expression of multidrug resistance gene 1 and multidrug resistance-related protein 1. However, fundamental biological functions of CIAPIN1 have not been elucidated. In this study, we first predicted the subcellular localization of CIAPIN1 with bioinformatic approaches and then characterized the intracellular localization of CIAPIN1 in both human and mouse cells by a combination of techniques including (a)immunohistochemistry and immunofluorescence, (b) His-tagged CIAPIN1 expression, and (c)subcellular fractionation and analysis of CIAPIN1 in the fractions by Western blotting. All methods produced consistent results; CIAPIN1 was localized in both the cytoplasm and the nucleus and was accumulated in the nucleolus. Bioinformatic prediction disclosed a putative nuclear localization signal and a putative nuclear export signal within both human and mouse CIAPIN1. These findings suggest that CIAPIN1 may undergo a cytoplasm-nucleus-nucleolus translocation.  相似文献   

7.
Sex-specific elimination of cells by apoptosis plays a role in sex determination in Caenorhabditis elegans. Recently, a mammalian pro-apoptotic protein named F1Aalpha has been identified. F1Aalpha shares extensive homology throughout the entire protein with the C. elegans protein, FEM-1, which is essential for achieving all aspects of the male phenotype in the nematode. In this report, the role of FEM-1 in apoptosis was investigated. Overexpression of FEM-1 induces caspase-dependent apoptosis in mammalian cells. FEM-1 is cleaved in vitro by the C. elegans caspase, CED-3, generating an N-terminal cleavage product that corresponds to the minimal effector domain for apoptosis. Furthermore, CED-4 associates with FEM-1 in vitro and in vivo in mammalian cells and potentiates FEM-1-mediated apoptosis. Similarly, Apaf-1, the mammalian homologue of CED-4 was found to associate with F1Aalpha. These data suggest that FEM-1 and F1Aalpha may mediate apoptosis by communicating directly with the core machinery of apoptosis.  相似文献   

8.
RAIDD, a caspase recruitment domain (CARD) containing molecule, interacts with procaspase-2 in a CARD-dependent manner. This interaction has been suggested to mediate the recruitment of caspase-2 to the tumour necrosis factor receptor 1 (TNFR1). In this paper we have studied the subcellular localization of RAIDD and its interaction with caspase-2. We demonstrate that endogenous RAIDD is mostly localized in the cytoplasm and to some extent in the nucleus. RAIDD localization is not affected by TNF-treatment of HeLa cells, but in cells ectopically expressing caspase-2, a fraction of RAIDD is recruited to the nucleus. In transfected cells, coexpression of RAIDD and caspase-2 leads to CARD-dependent colocalization of the two proteins to discrete subcellular structures. We further show that overexpression of the RAIDD-CARD results in the formation of filamentous structures due to CARD-mediated oligomerization. These structures were similar to death effector filaments (DEFs) formed by FADD and FLICE death effector domains (DEDs), and partially colocalized with DEFs. Our results suggest that similar to the DED, the RAIDD-CARD has the ability to form higher order complexes, believed to be important in apoptotic execution. We also present evidence that RAIDD-CARD oligomerization may be regulated by intramolecular folding of the RAIDD molecule.  相似文献   

9.
Antizymes (AZs) are polyamine‐induced proteins that negatively regulate cellular polyamine synthesis and uptake. Three antizyme isoforms are conserved among mammals. AZ1 and AZ2 have a broad tissue distribution, while AZ3 is testis specific. Both AZ1 and AZ2 inhibit ornithine decarboxylase (ODC) activity by binding to ODC monomer and target it to the 26S proteasome at least in vivo. Both also inhibit extra‐cellular polyamine uptake. Despite their being indistinguishable by these criteria, we show here using enhanced green fluorescent protein (EGFP)‐AZ2 fusion protein that in mammalian cells, the subcellular location of AZ2 is mainly in the nucleus, and is different from that of AZ1. The C‐terminal part of AZ2 is necessary for the nuclear distribution. Within a few hours, a shift in the distribution of EGFP‐AZ2 fusion protein from cytoplasm to the nucleus or from nucleus to cytoplasm is observable in NIH3T3 cells. In addition, we found that in cells a majority of AZ2, but not AZ1, is phosphorylated at Ser‐186, likely by protein kinase CK2. There may be a specific function of AZ2 in the nucleus. J. Cell. Biochem. 108: 1012–1021, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
It is well-established that the endoplasmic reticulum is the major site of phosphatidylinositol (PtdIns) synthesis. The PtdIns synthetic ability of other organelles, such as plasma membrane and nucleus, remains controversial. In the present study, we re-examine this question by comparing PtdIns synthesis in isolated cytoplasts (enucleated cells) with that in corresponding karyoplasts (nuclei surrounded by plasma membrane but lacking most cytoplasmic components). We report that cytoplasts are competent to carry out both basal and stimulated PtdIns synthesis as well as polyphosphoinositide hydrolysis, while karyoplasts can neither synthesize PtdIns nor hydrolyze phosphoinositides in response to agonists. The karyoplasts are, however, capable of synthesizing phosphatidylcholine (PtdCho), as previously reported. From these data, we conclude that PtdIns synthesis is limited to cytoplasmic components, and cannot be sustained by either plasma membrane or nucleus under conditions that permit robust PtdCho synthesis.  相似文献   

11.
Transmembrane 4 superfamily (TM4SF) molecules are predominantly mammalian cell surface glycoproteins that are thought to transduce signals mediating cell development, activation, and motility. Analysis of the Genpept sequence database reveals YKK8, a novel member of the TM4SF in the nematode,Caenorhabditis elegans. YKK8 is a putative 27.4-kDa protein encoded by a gene on chromosome III of theC. elegans genome (Wilson et al. [1994]Nature 368:32–38). The assignment of YKK8 to the TM4SF is justified by three criteria: statistical comparison of protein sequences, conserved TM4SF protein sequence motifs, and conserved TM4SF intron/exon boundaries in the genomic sequence. The discovery of a TM4SF molecule in the nematode extends this superfamily to a more primitive branch of the phylogenetic tree and suggests a fundamental role for TM4SF molecules in biology. Correspondence to: M.G. Tomlinson  相似文献   

12.
人类GABARAPL2基因的亚细胞定位   总被引:2,自引:0,他引:2  
为了对GABARAPL2(GABAA受体相关蛋白相似蛋白2)基因的功能进行初步分析,首先通过同源比较的方法将序列与其同源物进行比较,发现GABARAPL2的氨基酸序列与GABARAP(GABAA受体相关蛋白)高度同源,而GABARAP已证实通过结合细胞骨架的微蛋白,使GABAA受体聚集,定位在细胞膜上,本文采用PCR法从人脑组织的cDNA文库中扩增出GABARAPL2的cDNA,克隆至T质粒载体中进行测序验证,然后以此为模板引物中引入酶切位点再次PCR,扩增出GABARAPL2的开放阅读框,并将其插入到加强型绿色荧光蛋白融合表达载体EGFP中,将绿色荧光蛋白标记的GABARAPL2和GABARAP分别转染HLF细胞株,结果两种蛋白的分布情况基本一致,在细胞质内和核内均有分布,而且核内的分布较胞质为多,结构功能域分析表明,GABARAPL2含有蛋白激酶C磷酸化位点和酪氨酸激酶磷酸化位点,可能通过磷酸化参与细胞骨架的变化,结论 GABARAPL2和GABARAP不仅在胞质中作为受体相关蛋白协助受体的聚集、定位,还参与体内许多其它重要的生理过程。  相似文献   

13.
14.
邱并生 《微生物学通报》2011,38(12):1862-1862
沙眼衣原体(Chlamydia trachomatis,CT)是一种严格细胞内寄生、有独特发育周期的原核细胞型微生物.CT在宿主细胞浆内增殖,形成光镜可见的典型细胞内包涵体,包涵体为CT在宿主细胞内的生长繁殖提供屏障保护,同时也是CT与宿主细胞进行物质交换和信息传递的门户,CT不仅可从宿主细胞摄取营养物质,还可分泌效应蛋白进入宿主细胞质调节宿主细胞功能.CT基因组DNA序列和功能注释完成后,衣原体蛋白的亚细胞定位、结构和功能的研究已成为衣原体研究领域的热点之一[1-3].在CT与宿主细胞相互作用过程中,Inc蛋白、分泌蛋白等衣原体蛋白可能发挥着重要作用,鉴于蛋白质的亚细胞定位情况往往与其功能密切相关,衣原体蛋白在感染细胞中的定位认识成为其功能研究中的重要环节.  相似文献   

15.
16.
The EMI domain, first named after its presence in proteins of the EMILIN family, was identified here in several metazoan proteins with various domain architectures, among which the mammalian NEU1/NG3 proteins and Caenorhabditis elegans CED-1, identified as a transmembrane receptor that mediates cell corpse engulfment. Functional data available for EMILIN proteins suggest that the EMI domain could be a protein-protein interaction module. Sequence profiles specific of the EMI family of domains led to identify the probable orthologs of the C. elegans CED-1 protein in mammals and insects, which were yet uncovered.  相似文献   

17.
By employing a histochemical procedure on adult nematodes, the base of the Caenorhabditis elegans amphid appears to contain acetylcholinesterase and a nonspecific cholinesterase. Some precipitation was observed in the kinetosome region of the inner labial papilla with acethylthiocholine (AtCh) as substrate but not, in limited observations, in the absence of substrate or with butyrylthiocholine (BtCh). The amphidial tips, the tips of the inner labial papillae, and the lining of the buccal cavity contained substantial reaction product at the ultrastructural level, with or without substrates and inhibitors and therefore cannot be related to the presence of a cholinesterase.  相似文献   

18.
Subcellular localization of the Schlafen protein family   总被引:1,自引:0,他引:1  
Although the first members of the Schlafen gene family were first described almost 10 years ago, the precise molecular/biochemical functions of the proteins they encode still remain largely unknown. Roles in cell growth, haematopoietic cell differentiation, and T cell development/maturation have, with some experimental support, been postulated, but none have been conclusively verified. Here, we have determined the subcellular localization of Schlafens 1, 2, 4, 5, 8, and 9, representing all three of the murine subgroups. We show that the proteins from subgroups I and II localize to the cytoplasm, while the longer forms in subgroup III localize exclusively to the nuclear compartment. We also demonstrate upregulation of Schlafen2 upon differentiation of haematopoietic cells and show this endogenous protein localizes to the cytoplasm. Thus, we propose the different subgroups of Schlafen proteins are likely to have functionally distinct roles, reflecting their differing localizations within the cell.  相似文献   

19.
20.
We have previously shown that the peptidase, nardilysin, contains a bipartite nuclear localization signal that permits the enzyme to cycle between the nucleus and cytoplasm. In the present study, we report that nardilysin accumulates in the nucleus of an oocyte as a function of its maturation. Nardilysin is predominantly localized in the cytoplasm of an oocyte when initially placed into culture. The enzyme starts to accumulate in the nucleus within 30 min of in vitro culture. After 3 h, nardilysin is found as a spherical structure surrounded by condensed chromosomal DNA. After 18 h of in vitro culture, it co-localizes with beta-tubulin at the spindle apparatus. Cilostamide, a phosphodiesterase 3A inhibitor that inhibits meiosis, blocks accumulation of nuclear nardilysin. This finding demonstrates that the nuclear entry of nardilysin is tightly controlled in the oocyte. Taken together, these experiments strongly suggest a role for nardilysin in meiosis through its dynamic translocation from cytosol to nucleus, and then to the spindle apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号