首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Clusterin (ApoJ) is an extracellular glycoprotein expressed during processes of tissue differentiation and regression that involve programmed cell death (apoptosis). Increased clusterin expression has also been found in tumors, however, the mechanism underlying this induction is not known. Apoptotic processes in tumors could be responsible for clusterin gene activation. Alternatively, oncogenic mutations could modulate signal transduction, thereby inducing the gene. We examined the response of the rat clusterin gene to two oncogenes, Ha-ras and c-myc, in transfected Rat1 fibroblasts. While c-myc overexpression did not modify clusterin gene activity, the Ha-ras oncogene produced a seven to tenfold repression of clusterin mRNA; this down-regulation was also observed in the presence of c-myc. Since no induction of the clusterin gene was observed by the two oncogenes, we tested the alternative mechanism involving apoptosis. Growth factor withdrawal induced apoptosis, as shown by DNA degradation and micronuclei formation in the floating cells. Concomittantly we observed a three to tenfold increase in the amount of clusterin mRNA in the adhering cells of Rat1 and the c-myc transformed cell lines, and a weaker induction in the Ha-ras transformed cell line. On the basis of our results, we suggest that clusterin gene induction in the vital cells is produced by signaling molecules that are generated by the apoptotic cells. We conclude that apoptotic processes, not oncogenic mutations, are responsible for increased clusterin expression in tumors.  相似文献   

4.
5.
The role of clusterin/apolipoprotein J (Clu/ApoJ) and Bcl-2 on C(2)-ceramide-induced apoptosis of embryonic human diploid fibroblasts, MRC-5 and immortalized adult skin keratinocytes, HaCaT was investigated. C(2)-ceramide-induced apoptosis of HaCaT in a time- and dose-dependent manner, while in MRC-5 only at higher concentrations. There was a dose-dependent accumulation of Clu/ApoJ and downregulation of Bcl-2 which correlated with C(2)-ceramide-induced apoptosis of MRC-5. While overexpression of Bcl-2 suppressed C(2)-ceramide-mediated apoptosis in both cell types, Clu/ApoJ failed to do so, accessed by morphological changes, DNA fragmentation and PARP cleavage. There was no change in the expression of endogenous p53 or p21(Waf1/Cip1) upon C(2)-ceramide treatment of MRC-5. However, mutant p53(143ala) increased the sensitivity of MRC-5 to C(2)-ceramide-induced apoptosis by markedly downregulating Bcl-2, pointing to a role for p53. These results suggested that whereas downregulation of Bcl-2 may be a crucial factor involved in C(2)-ceramide-induced apoptosis, accumulation of Clu/ApoJ may be a signal of stress response. Moreover, the ceramide-activated apoptotic pathway may be regulated by p53.  相似文献   

6.
ATF5 loss of function has been shown previously to cause apoptotic cell death in glioblastoma and breast cancer cells but not in non-transformed astrocytes and human breast epithelial cells. The mechanism for the cell type-dependent survival function of ATF5 is unknown. We report here that the anti-apoptotic factor BCL-2 is a downstream target of ATF5 that mediates the prosurvival function of ATF5 in C6 glioma cells and MCF-7 breast cancer cells. ATF5 binds to an ATF5-specific regulatory element that is downstream of and adjacent to the negative regulatory element in the BCL-2 P2 promoter, stimulating BCL-2 expression. Highlighting the critical role of BCL-2 in ATF5-dependent cancer cell survival, expression of BCL-2 blocks death of C6 and MCF-7 cells induced by dominant-negative ATF5, and depletion of BCL-2 impairs ATF5-promoted cell survival. Moreover, we found that BCL-2 expression is not regulated by ATF5 in non-transformed rat astrocytes, mouse embryonic fibroblasts, and human breast epithelial cells, where expression of BCL-2 but not ATF5 is required for cell survival. These findings identify BCL-2 as an essential mediator for the cancer-specific cell survival function of ATF5 in glioblastoma and breast cancer cells and provide direct evidence that the cell type-specific function of ATF5 derives from differential regulation of downstream targets by ATF5 in different types of cells.  相似文献   

7.
8.
9.
10.
Clusterin expression is associated with programmed cell death (apoptosis) in many cell types but its exact role has not yet been defined. This study was carried out to determine the cellular localization of clusterin in the ovary and its functional role in the apoptotic cell death of ovarian follicles. A homogenous population of healthy and atretic follicles was obtained by treating immature rats with pregnant mare serum gonadotropin (PMSG). Apoptotic cell death was evaluated by TUNEL. Clusterin expression in the healthy and atretic follicles was examined by immunohistochemical and Western blot analyses, and gene expression was examined by Northern blot analysis. Clusterin protein and its mRNA are only expressed in granulosa cells of atretic follicles obtained from PMSG-treated rats on day 5 of the treatment. Healthy follicles from PMSG-treated rats on day 2 of the treatment do not express clusterin. Theca and stroma cells of both healthy and atretic follicles showed no signs of apoptosis and did not express clusterin. Withdrawal of trophic support from granulosa cells in cultures to induce apoptosis resulted in a dramatic increase in the levels of clusterin and its mRNA compared to cells cultured in serum-supplemented medium. In an attempt to establish the functional role of clusterin in the apoptotic cell death of ovarian follicles, the biosynthesis of clusterin in granulosa cells of healthy follicles was blocked by treatment of cells with antisense oligonucleotide to its cDNA. Treatment of granulosa cells with the antisense oligonucleotide resulted in an increase in the apoptotic cell death compared to the control. These findings indicate that depletion of clusterin can lead to the programmed cell death in ovary, suggesting a functional role for this protein in follicular atresia.  相似文献   

11.
12.
13.
Poly(ADP-ribose) polymerase is a B-MYB coactivator   总被引:3,自引:0,他引:3  
  相似文献   

14.
15.
16.
17.
Clusterin is, in its major form, a secreted heterodimeric disulfide-linked glycoprotein (75-80 kDa). It was first linked to cell death in the rat ventral prostate after androgen deprivation. Recent studies have demonstrated that overexpression of clusterin in prostatic cells protects them against tumor necrosis factor-alpha (TNFalpha)-induced apoptosis. However the details of this survival mechanism remain undefined. Here, we investigate how clusterin prevents cells from undergoing TNFalpha-induced apoptosis. We established a double-stable prostatic cell line for inducible clusterin by using the Tet-On gene expression system. We demonstrated that 50% of the cells overexpressing clusterin escaped from TNFalpha- and actinomycin D-induced cell death. Moreover we demonstrated that the incubation of MLL cells with conditioned medium containing the secreted clusterin or the supplementation of purified clusterin in the extracellular medium decreased the TNFalpha-induced apoptosis significantly. This extracellular action implicates megalin, the putative membrane receptor for clusterin to mediate survival. Indeed clusterin overexpression up-regulated the expression of megalin and induced its phosphorylation in a dose-dependent manner. We interestingly showed that clusterin overexpression is associated with the up-regulation of the phosphorylation of Akt. Activated Akt induced the phosphorylation of Bad and caused a decrease of cytochrome c release. These results enable us to pinpoint one mechanism by which secreted clusterin favors survival in androgen-independent prostate cancer cells, implicating its receptor megalin and Akt survival pathway.  相似文献   

18.
Cell cycle regulation of the human cdc2 gene.   总被引:52,自引:8,他引:44       下载免费PDF全文
S Dalton 《The EMBO journal》1992,11(5):1797-1804
  相似文献   

19.
20.
Clusterin/apolipoprotein J in human aging and cancer   总被引:25,自引:0,他引:25  
Clusterin/Apolipoprotein J (ApoJ) is a heterodimeric highly conserved secreted glycoprotein being expressed in a wide variety of tissues and found in all human fluids. Despite being cloned since 1989, no genuine function has been attributed to ApoJ so far. The protein has been reportedly implicated in several diverse physiological processes such as sperm maturation, lipid transportation, complement inhibition, tissue remodeling, membrane recycling, cell-cell and cell-substratum interactions, stabilization of stressed proteins in a folding-competent state and promotion or inhibition of apoptosis. ApoJ gene is differentially regulated by cytokines, growth factors and stress-inducing agents, while another defining prominent and intriguing ApoJ feature is its upregulation in many severe physiological disturbances states and in several neurodegenerative conditions mostly related to advanced aging. Moreover, ApoJ accumulates during the viable growth arrested cellular state of senescence, that is thought to contribute to aging and to tumorigenesis suppression; paradoxically ApoJ is also upregulated in several cases of in vivo cancer progression and tumor formation. This review focuses on the reported data related to ApoJ cell-type and signal specific regulation, function and site of action in normal and cancer cells. We discuss the role of ApoJ during cellular senescence and tumorigenesis, especially under the light of the recently demonstrated various ApoJ intracellular protein forms and their interaction with molecules involved in signal transduction and DNA repair, raising the possibility that its overexpression during cellular senescence might cause a predisposition to cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号