共查询到20条相似文献,搜索用时 0 毫秒
1.
The water uptake by individual water-culture-grown castor-oilplants (Ricinus communis) was varied and corresponding ratesof potassium uptake measured. The water flux was varied by changingthe rate of transpiration or by detopping the transpiring plants.Transpiration was altered by changing the atmospheric humidityat constant temperature and light intensity in a climatologicalwind tunnel. It was found that the uptake of potassium was divisibleinto two components: (a) an accumulation by the cells of theroot and (b) a passage through the root to the shoot via thevessels. These components were found to be entirely independentof one another. Also while (a) was unaffected by the water flux(b) was linearly related to it. The concentration of potassiumin the vessels was between 15 and 26 times that of the mediumand this ratio which was found to be similar in both intactand detopped exuding plants remained constant in the face ofwide changes in water flux. This essential similarity betweenexuding and transpiring plants and the finding that there wasa lag between the change in water flux and the response in potassiumuptake indicated that there is no continuous mass-flow pathwaybetween medium and xylem in these plants. Instead, increasedtranspiration seems in some way to increase the rate of theexudation process. These conclusions are discussed in relationto the results of other workers. 相似文献
2.
The uptake and flow of C, N and ions between roots and shoots in Ricinus communis L. II. Grown with low or high nitrate supply 总被引:1,自引:0,他引:1
Peuke Andreas D.; Hartung Wolfram; Jeschke W. Dieter 《Journal of experimental botany》1994,45(6):733-740
Seedlings of Ricinus communis L. cultivated in quartz sand weresupplied with a nutrient solution containing either 0.2 molm3 相似文献
3.
Peuke Andreas D.; Glaab Johanna; Kaiser Werner M.; Jeschke W. Dieter 《Journal of experimental botany》1996,47(3):377-385
Ricinus plants were supplied with nutrient solutions containingdifferent N-sources or different nitrate concentrations andwere also exposed to mild salinity. Between 41 and 51 d aftersowing, the ratio of inorganic to total nitrogen in xylem andphloem saps, the content of inorganic nitrogen and malate intissues, and nitrate reductase activities were determined. Theflows of nitrate, ammonium, and malate between root and shootwere modelled to identify the site(s) of inorganic nitrogenassimilation and to show the possible role of malate in a pH-statmechanism. Only in the xylem of nitrate-fed plants did inorganicnitrogen, in the form of nitrate, play a role as the transportsolute. The nitrate percentage of total nitrogen in the xylemsap generally increased in parallel with the external nitrateconcentration. The contribution of the shoot to nitrate reductionincreased with higher nitrate supply. Under salt treatment relativelymore nitrate was reduced in the root as compared with non-treatedplants. Ammonium was almost totally assimilated in the root,with only a minor recycling via the phloem. Nitrate reductaseactivities measured in vitro roughly matched, or were somewhatlower than, calculated rates of nitrate reduction. From therates of nitrate reduction (OH -production) and rates of malatesynthesis (2H+-production) it was calculated that malate accumulationcontributed 76, 45, or 39% to the pH-stat system during nitratereduction in plants fed with 0.2, 1.0 or 4.0 mM nitrate, malateflow in the phloem played no role. In tissues of ammonium-fedplants no malate accumulation was found and malate flows inxylem and phloem were also relative low. Key words: Ammonium, Ricinus communis, phloem, xylem, transport, nitrate, nitrate reductase, nitrogen assimilation, malate 相似文献
4.
5.
The effect of cycloheximide on uptake and transport of saltsby sunflower roots was investigated. Treatment with cycloheximideresulted in a reduction of uptake and transport of K+ and NO3to the xylem. Cycloheximide stimulated O2 uptake and appearedto act as an uncoupler of oxidative phosphorylation. The implicationsof these results regarding the use of cycloheximide as a meansof distinguishing between uptake and transport components ofion movement to the xylem are discussed. 相似文献
6.
Changes in net photosynthesis, respiration, transpiration andcontents of total C, NO3-N and reduced N were followed throughoutthe life of leaf 6 of nitrate-dependent plants of castor beanexposed to moderate salinity stress (71 mol m3 NaCl).Salt treatment was applied for measuring mineral flows in aparallel study (Jeschke and Pate, 1991b). Concurrent measurementswere made of solute composition and C: N molar ratios and concentrationsof reduced N and collected NO3-N in phloem sap bleeding fromshallow incisions in the top and at the base of petioles andin xylem exudates from flaps of proximal leaf midribs followingpressurization of the root system. The resulting data were usedto construct empirical models of the respective economies ofC, total N, NO3 and reduced N for a sequence of defined phasesof leaf life. Water use efficiency increased 3-fold from emergenceto a maximum of 1·5 mmol CO2 mol1 H2O before decliningto 0·5 mmol CO2 mol1 H2O at senescence. Xylemmolar ratios of C:N varied from 1·22·8,with nitrate always a smaller component than reduced N. Phloemsap C:N increased from 1040 with leaf expansion and wasthen maintained in the range of 4050 until falling steeplyto 20 at leaf senescence. Nitrate comprised less than 1% oftotal N in all phloem sap samples. The models of C uptake, flow,and utilization showed a major role of phloem import and thenincreasingly of laminar photosynthesis in providing C for leafgrowth. The carbon budget was thereafter characterized by ratesof phloem export closely matched to net rates of CO2 fixationby the lamina. Corresponding data for total N depicted an earlymajor role of both xylem and phloem import, but the eventualdominance of xylem import as the N source for leaf growth. Cyclingof N by xylem to phloem exchange commenced before the leaf hadachieved maximum N content, and was the major contributor tophloem export until leaf senescence when mobilized N providedmost exported N. The nitrate economy of the leaf was characterizedby early establishment of tissue pools of the ion in the petioleand to a lesser extent in the lamina, continued high rates ofnitrate reduction in the lamina but negligible assimilationin the petiole, and a release through xylem of previously accumulatedNO3 from petiole to lamina. Related data for reduced N illustratedthe much greater importance of this form of N than nitrate intransport, storage and cycling of N at all stages of leaf andpetiole life. Xylem to phloem interchanges of reduced N in petiolewere minimal in comparison with cycling through the lamina.The ratio of CO2 reduction to NO3 reduction in the lamina wasat first low (57 mol mol1) increasing to a peak valueof 294 during mature leaf functioning before declining to 190during the presenescence phase of leaf development. This patternreflected age-related effects on water use efficiency, changesin NO3 levels in the xylem stream entering the lamina, and therelatively low photosynthetic performances of very young andsenescent laminae. Key words: Ricinus communis, leaf development, phloem transport, xylem transport, carbon, nitrogen, nitrate, reduced nitrogen, nitrate reduction, partitioning 相似文献
7.
Peuke Andreas D.; Jeschke W. Dieter; Hartung Wolfram 《Journal of experimental botany》1994,45(6):741-747
Seedlings of Ricinus communis L. were cultivated in quartz sandand supplied with media which contained either different concentrationsof nitrate or ammonium nitrogen and were treated with a lowsalt stress. The concentration of ABA was determined in tissuesand in xylem and phloem saps. Between 41 and 51 day after sowing,abscisic acid (ABA) flows between roots and shoots were modelled.Long-distance transport of ABA was not stimulated under conditionsof nitrate deficiency (0.2 mol m3). However, when ammoniumwas given as the only N source (1.0 mol m3), ABA transportin both xylem and phloem was increased significantly. Mild saltstress (40 mol m3 NaCl) increased ABA transport in nitrate-fedplants, but not in ammonium-fed plants. The leaf conductancewas lowered by salt treatment with both nitrogen sources, butit was always lower in ammonium-fed compared to nitrate-fedplants. A negative correlation of leaf conductance to ABA levelsin leaves or flow in xylem was found only in comparison of ammonium-fedto nitrate-fed plants. Key words: Abscisic acid, ammonium, Ricinus communis, phloem, xylem, transport, nitrate, nitrogen nutrition 相似文献
8.
Sieve tube sap exuded from the cut hypocotyl of castor bean seedlings (Ricinus communis L.) was found to contain 0.2–0.5 mmol m?3abscisic acid (ABA). The ABA concentration in the sieve tube sap always exceeded that in root pressure exudate under a wide range of water supply. Exudation of sieve tube sap from the cut hypocotyls caused water loss, and this induced ‘water shortage’ in the cotyledons which resulted in the ABA concentration in the cotyledons increasing by 3-fold and that in the sieve tube sap increasing by up to 50-fold within 7h. The wounded surface of the cut hypocotyl was not responsible for the ABA increase. Incubation of the cotyledons of endosperm-free seedlings in various ABA concentrations (up to 100 mmol m?3) increased the ABA concentration in sieve tube sap. The concomitant increase in ABA, both in cotyledons and in sieve tube sap, had no effect on the phloem loading of sucrose, K+ and Mg2+ within the experimental period, i.e. up to 10h. It can be concluded that (i) the phloem is an important transport path for ABA, (ii) water stress at the phloem loading sites elevates phloem-mobile ABA, which may then serve as a water stress signal for sinks, for example stem and roots (not only for stomata), and (iii) the ABA concentration of cells next to or in the phloem is more important than the average ABA content in the whole cotyledon for determining the ABA concentration in sieve tube sap. 相似文献
9.
Effects of P deficiency on the uptake, flows and utilization of C, N and H2O within intact plants of Ricinus communis L. 总被引:1,自引:0,他引:1
Jeschke W. Dieter; Peuke Andreas; Kirkby Ernest A.; Pate John S.; Hartung Wolfram 《Journal of experimental botany》1996,47(11):1737-1754
The influence of P deficiency on the uptake, flow and utilizationof C, N and H20 by intact NO3-fed castor bean plants {Ricinuscommunis L.) was studied over a 9 d period in the middle oftheir vegetative growth. The modelling techniques incorporateddata on net increments or losses of C, N and H2O in plant parts,photosynthetic gains in and respiratory losses of C, molar C:Nratios of solutes in phloem and xylem sap and transpirationallosses of H20. Plant growth was inhibited within 3 d of withholdingP supply and dry matter production was less than one-third ofthe controls. Leaf growth was particularly depressed, whileroot growth was much less affected than that of the shoot. Shoot:rootratio of low-P plants was 1.5 compared with 2.6 under P supply.Over the 9 d study period total plant C and N increased by 560and 47 mmol, respectively, in the controls, but by only 113and 6.9 mmol in the low-P treatment. The particularly low incrementof N in P-deficient plants was due principally to decreasedN03- uptake. Flows of C and N during the study period were markedlydifferent between control and P-deficient plants. The partitioningprofile for C in P-deficient plants showed a dramatic inhibitionof net photosynthesis and attendant photoassimilate flow. Proportionaldownward to upward allocation of carbon increased with increasein sink size of the root relative to shoot. This was reflectedin greater relative allocation of C to root dry matter and rootrespiration than in P-sufficient plants, and suppressed cyclingof C from root to shoot via xylem. Nitrogen intake and xylemtransport to the shoot of P-deficient plants were only 15% ofthe control and, as in the case of C, downward allocation ofN predominated over upward phloem translocation. Apart fromthese severe changes, however, the basic patterns of N flowsincluding xylem-to-phloem and xylem-to-xylem transfer of N werenot changed, a feature highlighting the vital nature of thesetransfer processes even under deficiency conditions. The alterationsin flows and partitioning of C, N and H2O in response to low-Pconditions are discussed in relation to the corresponding effectsof moderate salt stress in Ricinus and the conclusion is reachedthat changes in nutrient flows under P deficiency were morehighly co-ordinated than when plants experience salt stress.Flow profiles under P deficiency which favour root growth andactivity are viewed as a means for increasing the potentialcapability of the plant to acquire P from the nutrient medium. Key words: Ricinus communis L., P deficiency, carbon, nitrogen, water, partitioning, xylem transport, phloem transport 相似文献
10.
The influence of plant water relations on phloem loading was studied in Ricinus communis L. Phloem transport was maintained in response to bark incisions even at severe water deficits. Water stress was associated with a net increase in the solute content of the sieve tubes, which resulted in maintenance of a positive phloem turgor pressure p. There was a significant increase in solute flux through the phloem with decreasing xylem water potential (). In addition, sugar uptake by leaf discs was examined in media adjusted to different water potentials with either sorbitol (a relatively impermeant solute) or ethylene glycol (a relatively permeant solute). The limitations in this experimental system are discussed. The results nevertheless indicated that sucrose uptake can be stimulated by a reduction in cell p, but that it is little affected by cell or solute potential s. On the basis of these data we suggest that sucrose loading is turgor-pressure dependent. This may provide the mechanism by which transport responds to changes in sink demand in the whole plant.Abbreviations
water potential
- s
solute potential
- p
pressure potential 相似文献
11.
Ewald Komor 《Planta》1977,137(2):119-131
Cotyledons of Ricinus communis take up externally supplied sucrose at a rate of up to 150 mol/h/g fresh weight, which is very high when compared with other sugar transport systems of higher plants. The uptake of sucrose is catalysed with a K
m
of 25 mmol l–1; at high sucrose concentrations a linear (diffusion) component becomes obvious. Other mono-, di-, or trisaccharides do not compete for sucrose uptake. Sucrose is accumulated by the cotyledons up to 100-fold, whereby most of the transported, externally supplied sucrose mixes with sucrose present in the tissue. At low sucrose concentrations, however; a small unexchangeable internal pool of sucrose becomes evident. Poisons of energy metabolism such as FCCP inhibit uptake and accumulation of sucrose. The transport of sucrose induces an increase of respiration, from which an energy requirement of 1.4 ATP/sucrose taken up can be calculated. Sucrose is taken up together with protons at an apparent stoichiometry of 0.3 protons/sucrose. Other sugars do not cause proton uptake. The K
m
for sucrose induced proton uptake is 5 mmol l–1; the discrepancy to the K
m
for sucrose uptake as well as the low proton: sucrose stoichiometry might possibly be caused by a large contribution of diffusion barriers. The estimated proton-motive potential difference would by sufficient to explain an electrogenic sucrose accumulation. The rate of uptake of sucrose is subject to feedback inhibition by internal sucrose. It is also regulated during growth of the seedlings since it develops rapidly during the first days of germination and declines again after the 4th day of germination, though no substantial increase of passive permeability resistance was observed.Abbreviations DMO
dimethyloxazolidinedione
- FCCP
trifluoromethoxy (carbonyl-cyanide) phenylhydrazon
- fr. wt.
fresh weight 相似文献
12.
The osmotic characteristics of phloem-sap exudation were examined in soil-grown and watercultured plants of Ricinus communis L. Prolonged exudation occurred from bark incisions in water-cultured plants. Fresh incisions caused large alterations in solute flux, but phloem-sap solute potential s changed by less than ±8% over a period of 7 h. This was associated with a constancy in the levels of sucrose and K+, the principal solutes in the sap. Studies with foliar-applied tracers and leaf-excision experiments suggested that exudation was maintained by solute loading from mature leaves. A wide range of mass transfer values through the phloem was found, these being a function of exudation rate. We consider that the exudation process possesses essentially similar characteristics to phloem transport in the intact plant. The way in which bark incisions bring about large changes in solute flux is discussed in terms of the physical properties of the sieve-tube system.Abbreviations
water potential
- s
solute potential
- p
pressure potential 相似文献
13.
Graviresponding primary roots of castor bean (Ricinus communis)were characterized by more acid efflux on their upper (i.e.rapidly growing) sides than their lower sides. Acid-efflux patternsof the upper and lower sides of horizontally oriented lateralroots were symmetrical. The onset of graviresponsiveness bysecondary roots correlated positively with the development ofasymmetric patterns of acid efflux similar to those of gravirespondingprimary roots. The addition of 1 mM sodium orthovanadate (aninhibitor of auxin-induced proton efflux) to the growth mediumabolished gravicurvature and the development of acid-effluxasymmetry by primary and secondary roots. These results suggestthat (i) the absence of an auxin-induced asymmetry of acid effluxmay be the factor responsible for uncoupling graviperceptionfrom gravitropism in lateral roots, and (ii) the developmentof an auxin-induced asymmetry of acid efflux may mediate theonset of graviresponsiveness by secondary roots of R. communis. Ricinus communis, castor bean, acid efflux, root gravitropism 相似文献
14.
Zeevaart JA 《Plant physiology》1977,59(5):788-791
The sites of abscisic acid (ABA) synthesis and metabolism in Ricinus communis L. were investigated by analyzing the levels of ABA and its two metabolites phaseic acid (PA) and dihydrophaseic acid (DPA) in the shoot tips, mature leaves, and phloem sap of stressed and nonstressed plants. 相似文献
15.
16.
Uptake mechanisms for neutral amino acids were investigated by expression of mRNA isolated from seedlings of Ricinus communis
L. in Xenopus laevis oocytes. After injection of mRNA from root, hypocotyl and cotyledon currents elicited by saccharose and
neutral amino acids ranged from 0.3 nA up to 2 nA depending on the respective substrate and the source of mRNA. These currents
were due to expression of low affinity uptake mechanisms and the KM values found for amino acid induced charge flow range
from 1 to 2 mM. The abundance and/or the specificity of the expressed mechanisms differ in the various tissues. Currents of
similar magnitude were recorded for alanine and glutamine with mRNA isolated from root, hypocotyl and cotyledons. Serine and
proline induced currents after injection of mRNA from hypocotyl and roots, in case of α-aminoisobutyric acid (AIB) induced
currents were generally small with mRNA from all tissues tested. In addition, differential sensitivity of glutamine and AIB
uptake in the high affinity range was evident towards the amino acid analogue 2-chloro-aminophenoxybutyric acid which indicated
an additional set of carriers operating in the micromolar concentration range. The results suggest that multiple transporters
for neutral amino acids exist in various tissues of the plant differing in specificity of charge flow and in sensitivity towards
the inhibitor 2-chloro-aminophenoxybutyric acid.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
17.
Christian Schobert Pia Großmann Maren Gottschalk Ewald Komor Attila Pecsvaradi Uta zur Mieden 《Planta》1995,196(2):205-210
The cut hypocotyl of Ricinus communis L. seedlings exudes phloem sap which contains a characteristic set of proteins (Sakuth et al. 1993, Planta 191, 207–213). These sieve-tube exudate proteins were probed with antibodies to highly conserved proteins, namely ribulose 1,5-bisphosphate carboxylase-oxygenase (Rubisco), Rubisco subunit-binding protein, heat-shock protein (HSP 70), chaperonin GroEL and ubiquitin. Homologous proteins in the sieve-tube exudate were identified with antisera to HSP 70, Rubisco-subunit-binding protein and ubiquitin. Ribulose-1,5-bisphosphate carboxylase-oxygenase, which was present in the tissue, was not detected. Of all the cross-reactive proteins detected, ubiquitin was special because the ubiquitin-to-protein ratio in the sieve-tube exudate was higher than in both the surrounding hypocotyl and in the cotyledonary tissues. Therefore, ubiquitin features properties which favour its transfer into the sieve tubes and which might rely on efficient transport through plasmodesmata. It is assumed that chaperones and ubiquitin are needed for the maintenance of sieve-tube function, e.g. to ensure correct folding of proteins. Their possible involvement in protein translocation through plasmodesmata from companion cells to sieve tubes is discussed.Abbreviations HSP
heat-shock protein
- Rubisco
ribulose1,5-bisphosphate carboxylase-oxygenase
- RBP
Rubisco-subunit-binding protein
- STEP
sieve-tube exudate protein
This research was supported by a TEMPUS grant European Community, Brüssel to E.K., which enabled the stay of A.P. The authors thank Dr. A. Bachmair (Institut für Botanik, Universität Wien, Austria), Prof. D. Wolf and Dr. A. Finger (Institut für Biochemie, Universität Stuttgart, Germany), Dr. S. Jentsch (Friedrich-Miescher Laboratorium, Max-Planck Institut Tübingen, Germany), Prof. U. Kull (Biologisches Institut, Universität Stuttgart, Germany), and Dr. T. Gatenby (Dupont, Wilmington, Del., USA) for generous supply of antisera used in this study. Improvement of English style was due to D. Schobert-Wiese. 相似文献
18.
19.
During growth of Ricinus communis seedlings, magnesium ions are mobilized in the endosperm, taken up by and accumulated to very high levels (150 μmol·g FW?1) in the cotyledons, and translocated to hypocotyl and roots. The magnesium gain from days 6 to 7 in the cotyledons and the seedling axis necessitates a total up-take rate of 600 nmol·h?1-seedling?1 and the phloem translocation rate must amount to 200 nmol·h?1. seedling?1. The phloem loading of magnesium and the regulatory properties of this process were investigated, making specific use of the ability to collect pure phloem sap from the cut hypocotyl of 6-d-old Ricinus seedlings. The concentration of magnesium in sieve-tube sap (5 mM) was fairly constant under many incubation conditions, e.g. incubation in magnesium-free buffer, incubation with different cations (K+, Na+, NH 4 + ) or anions (Cl?, NO 4 - , SO 4 2- ), or incubation with sucrose and amino acids. Even addition of magnesium chloride to the cotyledons did not enhance phloem loading of magnesium ions. Therefore the high magnesium content of the cotyledons was sufficient for continuous phloem loading of magnesium, irrespective of external ionic conditions. Also, the flow rate of sieve-tube sap did not influence the magnesium concentration in the sap. Only the incubation with sulfate and phosphate ions increased the magnesium-ion concentration in the phloem. Magnesium sulfate offered to the cotyledons caused a threefold increase of magnesium ions in the sieve-tube sap, which was inhibited by Na+, NH 4 + and Ca2+ in rising order, but not by K+. Incubation with phosphate for a prolonged period (8 h) led to an increased mobilization of intra-cotyle-donary magnesium and an enhanced phloem loading of mobilized magnesium. It is concluded that phosphate availability is a decisive factor for mobilization and translocation of magnesium ions within the plant. 相似文献
20.
Fabiana Antognoni Silvia Fornalè Claudia Grimmer Ewald Komor Nello Bagni 《Planta》1998,204(4):520-527
Polyamine content and enzyme activities in the biosynthetic and degradative pathways of polyamine metabolism were investigated in sieve-tube sap, xylem sap and tissues of seedlings and adult plants of Ricinus communis L. Polyamines were present in tissues and translocation fluids of both seedlings and adult plants in relatively high amounts. Only free polyamines were translocated through the plant, as indicated by the finding that only the free form was detected in the phloem and the xylem sap. Removal of the endosperm increased the polyamine content in the sieve-tube exudate of seedlings. The level and pattern of polyamines in tissue of adult leaves changed during leaf age, but not, however, in the sieve-tube sap. Xylem sap was relatively poor in polyamines. Polyamine loading in the phloem was demonstrated by incubating cotyledons with [14O]putrescine and several unlabelled polyamines. Feeding cotyledons with cadaverine and spermidine led to a decrease in the level of putrescine in sieve-tube sap, indicating a competitive effect. Comparison of polyamine content in the tissue and export rate showed that the export would deplete the leaves of polyamines within 1–3 d, if they were not replenished by biosynthesis. Polyamine biosynthesis in Ricinus proceeds mostly via arginine decarboxylase, which in vitro is 100-fold more active than ornithine decarboxylase. The highest arginine decarboxylase, ornithine decarboxylase and diamine oxidase activities were detected in cotyledons, while in sieve-tube sap only a slight arginine decarboxylase activity was found. Received: 18 March 1997 / Accepted: 20 August 1997 相似文献