首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bacterium Listeria monocytogenes uses the energy of the actin polymerization to propel itself through infected tissues. In steady state, it continuously adds new polymerized filaments to its surface, pushing on its tail, which is made from previously cross-linked actin filaments. In this paper we introduce an elastic model to describe how the addition of actin filaments to the tail results in the propulsive force on the bacterium. Filament growth on the bacterial surface produces stresses that are relieved at the back of the bacterium as it moves forward. The model leads to a natural competition between growth from the sides and growth from the back of the bacterium, with different velocities and strengths for each. This competition can lead to the periodic motion observed in a Listeria mutant.  相似文献   

2.
Among the filamentous bacteria occasionally causing bulking problems in activated sludge treatment plants, three morphotypes with attached microbial growth are common, Eikelboom Type 0041, Type 1851 and Type 1701. A better knowledge of the phylogeny and physiology of these filamentous bacteria is necessary in order to develop control strategies for bulking. In this study we have used a combination of fluorescence in situ hybridization (FISH) and microautoradiography (MAR) to investigate the identity and in situ physiology of the Type 0041-morphotype and its attached bacteria in two wastewater treatment plants. Identification and enumeration of Type 0041 using group-specific 16S rRNA-targeted FISH probes revealed that approximately 15% of the filaments hybridized with a gene probe specific for the TM7 group, a recently recognized major lineage in the bacterial domain. All other filaments morphologically identified as Type 0041 only hybridized to the general bacterial EUB338-probe, indicating that they probably do not belong to commonly isolated bacterial phyla such as the Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes, for which group-specific probes were used. The phylogenetic heterogeneity of Type 0041 again highlights the inadequacy of a morphology-based classification system. Like the filaments, most of the attached microbial cells were not identified beyond their affiliation to the Bacteria using the group-specific FISH probes. However, several different bacterial phyla were represented in the identified fraction suggesting that the attached microorganisms are phylogenetically diverse. The study of the in situ physiology of Type 0041 using MAR-FISH revealed that both the filaments and the attached bacteria on Type 0041 were versatile in the use of organic substrates and electron acceptors. It was observed that all Type 0041 could consume glucose, but none of the filaments were able to consume acetate under any conditions tested, in contrast to some of the attached bacteria. No significant physiological differences were found between TM7-positive and TM7-negative Type 0041 filaments, and only minor differences were observed between the two treatment plants tested. These are the first data on the physiology of the almost entirely uncharacterized TM7 phylum and show that TM7 filamentous bacteria can uptake carbon substrates under aerobic and anaerobic conditions.  相似文献   

3.
Listeria monocytogenes is driven through infected host cytoplasm by a comet tail of actin filaments that serves to project the bacterium out of the cell surface, in pseudopodia, to invade neighboring cells. The characteristics of pseudopodia differ according to the infected cell type. In PtK2 cells, they reach a maximum length of ~15 μm and can gyrate actively for several minutes before reentering the same or an adjacent cell. In contrast, the pseudopodia of the macrophage cell line DMBM5 can extend to >100 μm in length, with the bacteria at their tips moving at the same speed as when at the head of comet tails in bulk cytoplasm. We have now isolated the pseudopodia from PtK2 cells and macrophages and determined the organization of actin filaments within them. It is shown that they possess a major component of long actin filaments that are more or less splayed out in the region proximal to the bacterium and form a bundle along the remainder of the tail. This axial component of filaments is traversed by variable numbers of short, randomly arranged filaments whose number decays along the length of the pseudopodium. The tapering of the tail is attributed to a grading in length of the long, axial filaments.

The exit of a comet tail from bulk cytoplasm into a pseudopodium is associated with a reduction in total F-actin, as judged by phalloidin staining, the shedding of α-actinin, and the accumulation of ezrin. We propose that this transition reflects the loss of a major complement of short, random filaments from the comet, and that these filaments are mainly required to maintain the bundled form of the tail when its borders are not restrained by an enveloping pseudopodium membrane. A simple model is put forward to explain the origin of the axial and randomly oriented filaments in the comet tail.

  相似文献   

4.
Shigella flexneri is an enteroinvasive bacterium which causes bacillary dysentery in humans. A major feature of its pathogenic potential is the capacity to invade epithelial cells. Shigella entry into epithelial cells is considered a parasite-induced internalization process requiring polymerization of actin. Here we describe the cytoskeletal rearrangements during S. flexneri invasion of HeLa cells. After an initial contact of the bacterium with the cell surface, distinct nucleation zones of heavy chain actin polymerization appear in close proximity to the contact site underneath the parasite with long filaments being polymerized. These structures then push cellular protrusions that rise beside the entering bacterium, being sustained by tightly bundled long actin filaments organized in parallel orientation with their positive ends pointing to the cytoplasmic membrane. Finally, the cellular projections coalesce above the bacterial body, leading to its internalization. In addition, we found the actin-bundling protein plastin to be concentrated in these protrusions. Since plastin is known to bundle actin filaments in parallel orientation, colocalization of parallel actin filaments and plastin in the cellular protrusions strongly suggested a functional role of this protein in the architecture of parasite-induced cellular projections. Using transfection experiments, we show the differential recruitment of the two plastin isoforms (T- and L-) into Shigella entry zones. By transient expression of a truncated T-plastin which is deprived of one of its actin-binding sites, we also demonstrate the functional role of T-plastin in Shigella entry into HeLa cells.  相似文献   

5.
Bovine corneal endothelial cells deposit an extracellular matrix in short-term cultures, which contains various morphologically distinct structures when analysed by electron microscopy after negative staining. Amongst these were long-spacing fibers with a 150 nm periodicity, which appeared also to be assembled into more complex hexagonal lattices. Another structure was fine filaments, 10-40 nm in diameter, which occasionally exhibited 67 nm periodic cross-striation. Non-striated 10-20 nm filaments sometimes formed radially oriented bundles arranged in networks and fuzzy granular material was associated with the filaments in the bundles. Often, these bundles extended into solitary filaments, 10-20 nm in diameter, with a smooth surface. In addition, amorphous patches were seen, which contained dense aggregates of fibrillar and granular material. In longer-term cultures, some of the structures coalesced to form large fibrillar bundles. By using specific antibodies to various extracellular matrix components and immunolabeling with gold some of these structures could be identified as to their protein composition. Whereas fibronectin antibodies labeled a variety of structures--fine filaments with granular materials, radially oriented bundles, patchy amorphous aggregates and small granular material scattered throughout the background--type III collagen antibody predominantly labeled filaments with periodic banding (10-40 nm in diameter). A small amount of type III specific labeling was also observed over the networks of radially oriented fibrils and fine filaments associated with granular material. Type IV collagen and laminin antibodies localized in areas of the patchy amorphous aggregates. Type VI collagen antibodies, on the other hand, labeled fine filaments and the gold particles showed a pattern of 100 nm periodicity. Many of the fine 10-20 nm filaments exhibited a tubular appearance on cross-section, but they were not reactive with any of the antibodies used. Also negative were the long-spacing fibers and assemblies--including hexagonal lattices--containing this structural element.  相似文献   

6.
Bacterial motility is driven by the rotation of flagellar filaments that supercoil. The supercoiling involves the switching of coiled-coil protofilaments between two different states. In archaea, the flagellar filaments responsible for motility are formed by proteins with distinct homology in their N-terminal portion to bacterial Type IV pilins. The bacterial pilins have a single N-terminal hydrophobic α-helix, not the coiled coil found in flagellin. We have used electron cryo-microscopy to study the adhesion filaments from the archaeon Ignicoccus hospitalis. While I. hospitalis is non-motile, these filaments make transitions between rigid stretches and curved regions and appear morphologically similar to true archaeal flagellar filaments. A resolution of ~ 7.5 Å allows us to unambiguously build a model for the packing of these N-terminal α-helices, and this packing is different from several bacterial Type IV pili whose structure has been analyzed by electron microscopy and modeling. Our results show that the mechanism responsible for the supercoiling of bacterial flagellar filaments cannot apply to archaeal filaments.  相似文献   

7.
Isolates of male and female Oedogonium cardiacum for which defined media had been established were subsequently found to be contaminated with a species of Corynebacterium which failed to grow in the nutrient broth used, to test for contamination. After the cultures were rendered, axenic through treatment with, penicillin G, they failed to develop oogonia or sperm except occasionally at a very low level. The addition of small amounts of the bacterium increased the development of the reproductive structures; however a much more striking increase was obtained by constantly infecting the algal cultures with Pseudomonas putida. Neither of the bacteria increased growth as measured by dry weight; however the P. putida resulted, in the growth of very long filaments in contrast to the short filaments characteristic of both the axenic cultures and those infected with Corynebacterium sp.  相似文献   

8.
We show that the cell division gene ftsQ of Streptomyces coelicolor A3(2) is dispensable for growth and viability but is needed during development for the efficient conversion of aerial filaments into spores. Combined with our previous demonstration that ftsZ of S. coelicolor is not needed for viability, these findings suggest that cell division has been largely co-opted for development in this filamentous bacterium. This makes S. coelicolor an advantageous system for the study of cell division genes.  相似文献   

9.
The competition between filaments and floc formers in activated sludge has been historically described using kinetic selection. However, recent studies have suggested that bacterial storage may also be an important factor in microbial selection, since the dynamic nature of substrate flows into wastewater treatment plants elicit transient responses from microorganisms. Respirometry-based kinetic selection should thus be reevaluated by considering cell storage, and a more reliable method should be developed to include bacterial storage in the analysis of growth of filaments and floc formers in activated sludge. In this study, we applied substrate uptake tests combined with metabolic modeling to determine the growth rates, yields and maintenance coefficients of bulking and non-bulking activated sludge developed in lab scale reactors under feast and famine conditions. The results of quantitative fluorescence in situ hybridization (FISH) showed that the filaments Eikelboom Type 1851, Type 021N, and Thiothrix nivea were dominant in bulking sludge, comprising 42.0 % of mixed liquor volatile suspended solids (MLVSS), with 61.6% of the total filament length extending from flocs into bulk solution. Only low levels of Type 1851 filament length (4.9% of MLVSS) occurred in non-bulking sludge, 83.0% of which grew inside the flocs. The kinetic parameters determined from the substrate uptake tests were consistent with those from respirometry and showed that filamentous bulking sludge had lower growth rates and maintenance coefficients than non-bulking sludge. These results provide support for growth kinetic differences in explaining the competitive strategy of filamentous bacteria.  相似文献   

10.
The structure of the shell muscle of eleven species of patellidlimpet is described from light and transmission electron microscopestudies. Although the muscle has many structural characteristicstypical of molluscan smooth muscle, it also has a number ofunusual features. At the electron microscope level two myofibretypes are distinguishable. Type I cells, present in all species,contain conventional contractile apparatus in the form of thickand thin filaments. Thick filaments contain paramyosin and varyin diameter between 20—180 nm. An axial striation witha repeat of 14.2 nm is calculated from optically diffractedmicrographs of isolated thick filaments. Transverse sectionsof thick filaments reveal bands from which the transverse repeatof the paramyosin crystal lattice is calculated. Type II myofibres,which are present in five species, contain a novel arrangementof thin filaments with electron-dense regions at intervals of80–150 nm. The striated thin filaments are similar inappearance to the microfilament bundles and stress-fibres ofnon-muscle cells. They also have similarities to the leptomericorganelles of some vertebrate muscle tissues. Associated withthe muscle is an unusually large amount of collagen which hasa periodicity of 62 nm calculated from optical diffraction patternsof isolated collagen fibrils. (Received 3 July 1989; accepted 12 October 1989)  相似文献   

11.
Gram-negative pathogens evolved a syringe-like nanomachine, termed type 3 secretion system, to deliver protein effectors into the cytoplasm of host cells. An essential component of this system is a long helical needle filament that protrudes from the bacterial surface and connects the cytoplasms of the bacterium and the eukaryotic cell. Previous structural research was predominantly focused on reconstituted type 3 needle filaments, which lacked the biological context. In this work we introduce a facile procedure to obtain high-resolution cryo-EM structure of needle filaments attached to the basal body of type 3 secretion systems. We validate our approach by solving the structure of Salmonella PrgI filament and demonstrate its utility by obtaining the first high-resolution cryo-EM reconstruction of Shigella MxiH filament. Our work paves the way to systematic structural characterization of attached type 3 needle filaments in the context of mutagenesis studies, protein structural evolution and drug development.  相似文献   

12.
AIMS: This study aimed to develop a quantitative method for measuring mass concentrations of Type 021N, a bacterium causing bulking in activated sludge. METHODS AND RESULTS: Fluorescence in situ hybridization was used to determine the relationship between the concentration ratio of the mass of the bacterium Type 021N to mass of activated sludge, and the proportion of fluorescence area imparted by probe G123T specific for Type 021N to that obtained with probe EUB338 for bacteria. A linear relationship existed between the cube root of the mass concentration ratio and square root of this area proportion. CONCLUSIONS: A standard curve was obtained for quantifying Type 021N in activated sludge. SIGNIFICANCE AND IMPACT OF THE STUDY: This method may allow the determination of growth rate constant of filamentous bacteria in activated sludge, information that will help in understanding their ecology.  相似文献   

13.
Glucagon solutions at pH 2.0 were subjected to mechanical agitation at 37 degrees C in the presence of a hydrophobic surface to explore the details of aggregation and fiber formation. High-resolution intermittent-contact atomic force microscopy performed in solution revealed the presence of aggregates after 0.5 h; however, longer agitation times resulted in the formation of fibrillated structures with varying levels of higher-order assembly. Height, periodicity, and amplitude measurements of these structures allowed the identification of four distinct fiber types. The most elementary fiber form, designated a filament, self-associates in a specific wound fashion to produce protofibrils composed of two filaments. Subsequent self-assembly of these filaments and protofibrils leads to two well-defined fibrillar motifs, termed Type I and Type II. Atomic force microscopy imaging of pH 2.8 glucagon solutions not agitated or exposed to elevated temperature revealed the presence of amorphous aggregates before the formation of fibrillar structures similar to those seen at pH 2.0. Time-course solution Fourier transform infrared spectroscopy and thioflavin T binding studies suggested that glucagon aggregation and fibril formation were associated with the development of beta-sheet structure. The results of these studies are used to describe a possible mechanism for glucagon aggregation and fibrillation that is consistent with a hierarchical assembly model proposed for amyloid fibril formation.  相似文献   

14.
The fine structure of the Gram-negative filamentous gliding bacterium, Herpetosiphon is described. The outer membrane of the cell envelope could not be resolved as a separate structure, probably because it is fused with the underlying dense (peptidoglycan) layer. There was an additional wall layer outside this membrane-peptidoglycan complex, but a sheath in the classical sense, as postulated in the definition of the genus, was lacking. On the cell surface a loose network of fibrils could be seen. Inside the cells 3 types of intracytoplasmic membranes were discernible: a) true mesosomes near cross walls; b) a system of coarser membranes which was not connected with the septa and formed networks or tubular complexes; c) degenerated septa within bulbs. the bulbs are swollen sections of filaments, occurred mainly in ageing cultures, and are probably a degeneration phenomenon. The filaments contained necridia, i.e. dead and empty cells, across which breaks may occur so that empty cell wall cylinders remain attached to the ends of the daughter filaments, falsely suggesting the presence of a sheath. The taxonomy of Herpetosiphon is discussed in detail: The organism has been described before as Flexibacter giganteus. It is proposed to abandon the species H. aurantiacus in favor of H. giganteus, but to retain the genus Herpetosiphon. An improved definition of the genus is given.  相似文献   

15.
Type IV pili are multifunctional filaments displayed on many bacterial pathogens. Members of the Type IVa pilus subclass are found on a diverse group of human pathogens, whereas Type IVb pili are found almost exclusively on enteric bacteria. The Type IVa and IVb subclasses are distinguished by differences in the pilin subunits, including the fold of the globular domain. To understand the implications of the distinct pilin folds, we compared the stabilities of pilin subunits and pilus filaments for the Type IVa GC pilus from Neisseria gonorrhoeae and the Type IVb toxin-coregulated pilus (TCP) from Vibrio cholerae. We show that while recombinant TCP pilin is more stable than GC pilin, the GC pili are more resistant to proteolysis, heat and chemical denaturation than TCP, remaining intact in 8?M urea. To understand these differences, we determined the TCP structure by electron microscopy and three-dimensional image reconstruction. TCP have an architecture similar to that of GC pili, with subunits arranged in a right-handed 1-start helix and related by an 8.4-? axial rise and a 96.8° azimuthal rotation. However, the TCP subunits are not as tightly packed as GC pilins, and the distinct Type IVb pilin fold exposes a segment of the α-helical core of TCP. Hydrophobic interactions dominate for both pilus subtypes, but base stacking by aromatic residues conserved among the Type IVa pilins may contribute to GC pilus stability. The extraordinary stability of GC pili may represent an adaptation of the Type IVa pili to harsh environments and the need to retract against external forces.  相似文献   

16.
The in situ physiology of the filamentous bacterium Skermania piniformis frequently seen in activated sludge foams in Australia was investigated. An oligonucleotide probe, Spin1449, targeting the 16S rRNA of S. piniformis was designed for its identification by fluorescence in situ hybridization (FISH), validated with pure cultures and applied successfully to foam samples from two geographically distant Australian plants. While filaments of this bacterium appeared to be comparatively hydrophobic, the organism had no clear preference for hydrophobic or hydrophilic substrates. In both foams examined using microautoradiography (MAR), filaments selectively took up substrates under aerobic and anoxic (NO(3) (-)) but not anaerobic or anoxic (NO(2) (-)) conditions. Skermania piniformis assimilated oleic acid, palmitic acid, glycerol and glycine. Ectoenzyme activities detected suggest that S. piniformis has an ability to assimilate a greater range of substrates than might be concluded from the MAR data obtained here. Based on the substrate uptake data presented here, an anaerobic selector may work for controlling S. piniformis in activated sludge systems.  相似文献   

17.
Nuclear and Cell Division in Filamentous Bacteria   总被引:9,自引:0,他引:9  
GROWTH in unicellular bacteria usually takes place as a sequence of events culminating in cell division1–6. In some cases, however, bacteria grows in chains (referred to here as filaments). Two reasons have been put forward for this: either the individual segments of a filament are complete cells in which the timing of separation from adjacent segments is an imprecise event, not coordinated with overall growth, or the production of filaments may be a controlled process which is a prerequisite to cell division. There is some support for the first possibility7, but more recently it has been observed that the chain length of filamentous bacteria depends on the growth medium8,9. Here we report further evidence that in the bacterium Bacillus subtilis the production of filaments of up to sixteen nuclei is part of a programme of events necessary for the maintenance of particular rates of cell division and that the structure and physiology of this bacterium can be explained along the same lines as those of the models describing growth in the unicellular intestinal bacteria Escherichia coli and Salmonella typhimurium.  相似文献   

18.
The shape of the flagellar filaments of the bacterium Salmonella typhimurium under ordinary conditions is a left-handed helix. In addition to the normal wild-type filament, non-helical (i.e. straight), right-handed helical (early), or circular (semi-coiled and coiled) filaments and filament with small amplitude (fl-type) have been found in mutants or in filaments reconstituted in vitro. We analysed wild-type flagellin and flagellins from 17 flagellar-shape mutants (6 with straight filaments, 6 with curly filaments, 4 with coiled filaments and 1 with fl-type filament) by amino acid sequencing to identify the mutational sites. All mutant flagellins except that of the fl-type filament had single mutations; the fl-type flagellin had two mutations in the molecule. The sites of these mutations were localized in alpha-helical segments of the terminal regions of flagellin. A possible mechanism of the polymorphism of the flagellar filament is discussed.  相似文献   

19.
Amino acid sequence studies of helical particles derived from proteolytic digests of mouse epidermal keratin intermediate filaments (IF) have shown that their coiled-coil molecules are heterodimers of Type I and Type II keratins, with a parallel arrangement of the two chains. From a reappraisal of published chemical cross-linking data, it is concluded that the coiled-coil molecules in all IF consist of pairs of parallel chains in precise axial register.  相似文献   

20.
On the basis of sequence homology with mammalian α-keratins, and on the criteria that the coiled-coil segments and central linker in the rod domain of these molecules must have conserved lengths if they are to assemble into viable intermediate filaments, a total of 28 Type I and Type II keratin intermediate filament chains (KIF) have been identified from the genome of the European common wall lizard (Podarcis muralis). Using the same criteria this number may be compared to 33 found here in the green anole lizard (Anole carolinensis) and 25 in the tuatara (Sphenodon punctatus). The Type I and Type II KIF genes in the wall lizard fall in clusters on chromosomes 13 and 2 respectively. Although some differences occur in the terminal domains in the KIF chains of the two lizards and tuatara, the similarities between key indicator residues – cysteine, glycine and proline – are significant. The terminal domains of the KIF chains in the wall lizard also contain sequence repeats commonly based on glycine and large apolar residues and would permit the fine tuning of physical properties when incorporated within the intermediate filaments. The H1 domain in the Type II chain is conserved across the lizards, tuatara and mammals, and has been related to its role in assembly at the 2–4 molecule level. A KIF-like chain (K80) with an extensive tail domain comprised of multiple tandem repeats has been identified as having a potential filament-crosslinking role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号