首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study examined the impact of disturbance on the pattern of diversity, forest structure and regeneration of tree species in the Vindhyan dry tropical forest of India. A total of 1500 quadrats distributed over five, 3-ha permanent plots in five sites, differing in degree of disturbance, were used to enumerate and measure the tree species. A total of 65 species with 136,983 individuals were enumerated in the total 15-ha area for stems 30 cm height. The number of species and number of stems ranged from 12 to 50 and 8063–65331 per 3-ha area. The number of species and stems for trees 10 cm dbh ranged from 3 to 28 species, with a mean value of 16 species ha–1, and from 16 to 477 stems, with a mean value of 256 stems ha–1, respectively. The adult based PCA ordination indicated uniqueness of sites in terms of species composition and habitat characteristics. PCA ordination also showed uniqueness of sites in terms of seedling composition, but the seedling and adult distributions were not spatially associated. The distinct species composition at the different sites and at the two life-cycle stages on the same site is indicative of marked spatio-temporal dynamics of the dry tropical forest. The density–diameter semi-logarithmic curves ranged from a near linear to an overall concave appearance with a limited plateau in the mid-diameter ranges. The -diversity and its components decreased with increasing disturbance intensity, reflecting enhanced utilization pressure with increasing disturbance. The site-wise and species-wise regression analyses of the number of individuals in different stages of the species revealed that both the level of disturbance and the nature of species strongly affect the regeneration. In conclusion, although the forest is relatively species-poor, the differential species composition on different sites and the temporal dynamics lend a unique level of diversity to the tropical dry deciduous forest.  相似文献   

2.
K. S. Murali  R. Sukumar 《Oecologia》1993,94(1):114-119
Patterns of leaf-flushing phenology of trees in relation to insect herbivore damage were studied at two sites in a seasonal tropical dry forest in Mudumalai, southern India, from April 1988 to August 1990. At both sites the trees began to flush leaves during the dry season, reaching a peak leaf-flushing phase before the onset of rains. Herbivorous insects emerged with the rains and attained a peak biomass during the wet months. Trees that flushed leaves later in the season suffered significantly higher damage by insects compared to those that flushed early or in synchrony during the peak flushing phase. Species whose leaves were endowed with physical defenses such as waxes suffered less damage than those not possessing such defenses. There was a positive association between the abundance of a species and leaf damage levels. These observations indicate that herbivory may have played a major role in moulding leaf flushing phenology in trees of the seasonal tropics.  相似文献   

3.
Reserves of twig nitrogen of drought-deciduous species changed seasonally and provided some of the nitrogen required for canopy reconstruction after drought relief. By contrast, in evergreen species, nitrogen mobilization from old leaves and use in expanding leaves occurred simultaneously at the time of leaf exchange and twig nitrogen remained constant  相似文献   

4.
Acridid communities are sensitive to anthropogenic disturbance and the community structure of acridids plays vital role in functioning the forest ecosystem. They are potentially useful bioindicators for conservation planning and habitat disturbances. Acridid assemblages of three different habitat types based on degree of disturbance as follows five natural sites, five moderately disturbed sites and five highly disturbed sites in Chaupahari forest, West Bengal, India were studied. Diversity, abundance, equitability and species richness of acridid were observed in respect to undisturbed and disturbed habitats. The species richness and diversity of the sites tracked the intensity of disturbance, the greatest value being associated with the natural site followed by the moderately disturbed site and highly disturbed site. The highest species richness and diversity index indicate the suitable habitat for acridid population. Statistical analysis infers that different species show different behavior and the sites are also different in relation to different habitat types.  相似文献   

5.
Questions: Density dependence is thought to restrict exponential growth as well as give rise to size structure in populations. Size hierarchy in trees from tropical dry deciduous forests is studied to ask (1) whether nature of competition is symmetric or asymmetric and (2) what is the self thinning trajectory under a natural gradient of tree density. Location: Western India. Methods: Density was measured as the number of trees in 10‐m radius circular plots (n= 96) and size was measured at DBH. Size variation was evaluated by the Gini coefficient (n= 1239 trees). Results: Size inequality between neighbours decreased with density but in a non‐linear manner. In the backdrop of existing theory this indirectly suggests that competitive interactions may be symmetric over a ‘depletive’ resource such as below‐ground water (rather than a ‘pre‐emptive’ resource such as light), which is very plausible in a semi‐arid environment. The self thinning coefficient derived from the relationship between stem diameter and density (γ~?1/4), is higher than expected from existing models of allometric plant growth (γ=?1/3) which are based on above‐ground interactions alone. Seen in conjunction, these results suggest that above‐ground structures, such as stem size, do not adequately represent the outcome of competitive interactions when below‐ground resources, such as water, may be more important under semi‐arid conditions. Conclusions: The non‐linear relationship between size inequality and density indicates that there exists a density threshold beyond which investment in above‐ground biomass becomes sluggish in semi‐arid, deciduous forests. Since current allometric models do not incorporate below‐ground biomass for trees, these data suggest that a more comprehensive allometric growth model may have higher predictive power and wider applicability.  相似文献   

6.
This paper describes a framework of criteria and indicators to evaluate the status of performance of the forest protection committees of India in managing community forests under the Joint Forest Management programme. The framework consists of 3 principles, 6 criteria, 12 indicators and 18 verifiers and was applied for assessment of forest protection committees operating in south-west West Bengal, India. The study area is dominated by dry deciduous forests, mostly in degraded state. An analysis guide along with a set of questionnaire was prepared to identify the strengths and weaknesses of the forest protection committees. An ecological study was also carried out simultaneously in the forest areas protected by the corresponding forest protection committees to measure the condition of forests.Results from the study suggest that the developed criteria and indicators form an effective framework for assessing the extent of implementation of sustainable forest management principles in the context of community forestry. The methodology used in this study is designed to be simple, easily comprehendible and quantifiable so as to implement it in the grass-root level by field persons without any major difficulty.Regarding performance of the committees, the study reveals that there exists a highly positive relationship between the level of functioning of the committees and the status of health of the forests and vice versa. It is also found that the functional status of a forest protection committee depends mostly on the extent of group cohesiveness present among the members of the committee.  相似文献   

7.
Tree diameter growth is sensitive to environmental fluctuations and tropical dry forests experience high seasonal and inter-annual environmental variation. Tree growth rates in a large permanent plot at Mudumalai, southern India, were examined for the influences of rainfall and three intrinsic factors (size, species and growth form) during three 4-year intervals over the period 1988–2000. Most trees had lowest growth during the second interval when rainfall was lowest, and skewness and kurtosis of growth distributions were reduced during this interval. Tree diameter generally explained <10% of growth variation and had less influence on growth than species identity or time interval. Intraspecific variation was high, yet species identity accounted for up to 16% of growth variation in the community. There were no consistent differences between canopy and understory tree growth rates; however, a few subgroups of species may potentially represent canopy and understory growth guilds. Environmentally-induced temporal variations in growth generally did not reduce the odds of subsequent survival. Growth rates appear to be strongly influenced by species identity and environmental variability in the Mudumalai dry forest. Understanding and predicting vegetation dynamics in the dry tropics thus also requires information on temporal variability in local climate.  相似文献   

8.
Abstract. Understanding the regeneration niche of animal-dispersed epiphytes is important in understanding forest community structure, maintenance of species richness in plant communities, animal movements and distributions, and in managing plant and animal communities for conservation. Strangler figs are particularly interesting for studying epiphyte-host relations because they are hemiepiphytes, implying that strangler and host can potentially belong to the same species and either fuse together or strangle each other, and because all stranglers have many-seeded, animal-dispersed fruit, providing many opportunities for seed dispersal to other stranglers. A study was conducted at a roadside and at a forest site in Karnataka State, south India, to determine factors influencing host choice of strangler figs. Stranglers were found more frequently at the roadside site than at the forest site. At the roadside site, stranglers were found much more abundantly on Ficus hosts than on non-Ficus hosts, whereas at the forest site, stranglers were found more abundantly on non- Ficus hosts. Host tree species with animal-dispersed fruit bore significantly more stranglers than those with mechanically dispersed fruit. More stranglers were found on hosts in large d.b.h. size classes (>80 cm d.b.h.) than on those in small d.b.h. classes. Prior studies of strangler-host relations have never found stranglers growing on other stranglers. The results of this study suggest that stranglers are fully capable of regenerating on other stranglers, including conspecifics, but these regeneration events are not observed in forests because of relatively low strangler seed rain, due to lack of clumping of strangler hosts, and low insolation in these habitats.  相似文献   

9.
The study described patterns of leaf dry mass change, leaf mass per area (LMA), relative growth rate and leaf life span (LL) for 14 evergreen and 7 deciduous species of a tropical forest of Southern Assam, India. Leaf expansion in both the groups was, in general, completed before June (i.e. well before the onset of monsoon rains). Although leaf dry mass during leaf initiation phase was significantly higher (P < 0.01) in evergreen species than in deciduous species, at the time of full leaf expansion, average leaf dry mass relative to the peak leaf dry mass, realised by the evergreen species was lower (66 %) than for deciduous species (76 %). Leaf dry mass increase in both groups continued after leaf full expansion. Evergreen species had a longer leaf dry mass steady phase than deciduous species (2–6 vs 2–3 months). Average LMA of mature leaves for evergreen species (77.43 g m?2) was significantly greater than that of deciduous species (48.43 g m?2). LL ranged from 165 days in Gmelina arborea (deciduous) to 509 days in Dipterocarpus turbinatus (evergreen). LMA was correlated positively with LL, indicating that evergreen species with higher leaf construction cost retain leaves for longer period to pay back. The average leaf dry mass loss before leaf shedding was greater (P < 0.01) for deciduous species (30.29 %) than for evergreen species (18.31 %). Although the cost of leaf construction in deciduous species was lower than for evergreen species, they replace leaves at a faster rate. Deciduous species perhaps compensate the cost involved in faster leaf replacement through higher reabsorption of dry mass during senescence, which they remobilise to initiate growth in the following spring when soil resources remain limiting.  相似文献   

10.
Root biomass of a dry deciduous tropical forest in Mexico   总被引:3,自引:0,他引:3  
The deciduous tropical dry forest at Chamela (Jalisco, Mexico) occurs in a seasonal climate with eight rainless (November through June) and four wet months (700 mm annual precipitation). The forest reaches a mean height of 10 m. Tree density in the research area was 4700 trees per ha with a basal area at breast height of 23 m2 per ha. The above-and below-ground biomass of trees, shrubs, and lianas was 73.6 Mg ha–1 and 31 Mg ha–1, respectively. A root:shoot biomass ratio of 0.42 was calculated. Nearly two thirds of all roots occur in the 0–20 cm soil layer and 29% of all roots have a diameter of less than 5 mm.  相似文献   

11.
A trenching method was used to determine the contribution of root respiration to soil respiration. Soil respiration rates in a trenched plot (R trench) and in a control plot (R control) were measured from May 2000 to September 2001 by using an open-flow gas exchange system with an infrared gas analyser. The decomposition rate of dead roots (R D) was estimated by using a root-bag method to correct the soil respiration measured from the trenched plots for the additional decaying root biomass. The soil respiration rates in the control plot increased from May (240–320 mg CO2 m–2 h–1) to August (840–1150 mg CO2 m–2 h–1) and then decreased during autumn (200–650 mg CO2 m–2 h–1). The soil respiration rates in the trenched plot showed a similar pattern of seasonal change, but the rates were lower than in the control plot except during the 2 months following the trenching. Root respiration rate (R r) and heterotrophic respiration rate (R h) were estimated from R control, R trench, and R D. We estimated that the contribution of R r to total soil respiration in the growing season ranged from 27 to 71%. There was a significant relationship between R h and soil temperature, whereas R r had no significant correlation with soil temperature. The results suggest that the factors controlling the seasonal change of respiration differ between the two components of soil respiration, R r and R h.  相似文献   

12.
We tested the prediction that global warming has caused recent decreases in body weight (Bergmann's rule) and increases in wing length (Allen's rule) in 14 species of passerine birds at two localities in England: Wicken Fen (1968–2003) and Treswell Wood (1973–2003).
Predicted long-term linear decreases in residual body weight occurred in four species: dunnocks (Wicken Fen), and great tits, blue tits and bullfinches (Treswell Wood). Non-linear decreases also occurred in reed warblers and blackcaps at Wicken Fen, which also had a surprising linear increase in residual body weight in blackbirds.
Residual wing lengths increased linearly, as predicted, in six of seven species at Wicken Fen. Whereas there were non-linear long-term increases in wrens, dunnocks and blackbirds in Treswell Wood. Unexpected linear decreases also occurred in residual wing lengths in willow warblers (Wicken Fen), and blue tits, great tits and chaffinches (Treswell Wood).
The most parsimonious explanation for such long-term changes in body weight is global warming, as predicted by Bergmann's rule. Greater site and species-specific effects on wing length (e.g. non-linear changes plus shorter wings in the woodland habitat) suggest a less straightforward conclusion concerning Allen's rule, probably because wing length involved variation in both bone and feather growth.
Changes in residual body weights and wing lengths often differed between species and were sometimes non-linear, perhaps reflecting short-term modifications in selection pressures. Human-induced influences are discussed, such as avian predator population densities and land-use change. Short-term variation in temperature had little effect, but rainfall did explain the unusual increase in blackbird body weight, possibly as a result of improving food (earthworm) availability.  相似文献   

13.
Seasonal reproduction in birds is the adaptation to breed at the time of the greatest survival of young. This exact moment is mainly imposed by the photoperiod which stimulates the hypothalamo-pituitary-gonadal axis and starts breeding season. This article summarizes present knowledge concerning: 1/ perception and transduction of light into the biological signal; 2/ model of the avian photoperiodic response; 3/ seasonal changes in hypothalamic secretion of gonadotropin-releasing hormone (GnRH), vasoactive intestinal polipeptide (VIP), as well as the gonadotropin inhibitory hormone (GnIH); 4/ seasonal interactions between pituitary hormones; 5/ seasonal morphological and functional changes within the avian gonads.  相似文献   

14.
Biomass and carbon storage of the North American deciduous forest   总被引:1,自引:0,他引:1  
Field measures of tree and shrub dimensions were used with established biomass equations in a stratified, two-stage cluster sampling design to estimate above-ground ovendry woody biomass and carbon storage of the eastern deciduous forest of North America. Biomass averaged 8.1 ± 1.4 (95% C.I.) kg/m2 and totaled 18.1 ± 3.1 (95% C.I.) gigatons. Carbon storage averaged 3.6 ± 0.6 (95% C.I.) kg/m2 and totaled 8.1 ± 1.4 (95% C.I.) gigatons. These values are lower than previous estimates commonly used in the analysis of the global carbon budget which range from 17.1 to 23.1 kg/m2 for biomass and 7.7 to 10.4 kg/m2 for carbon storage. These new estimates for the deciduous forest, together with earlier work in the boreal forest begin to reveal a pattern of overestimation of global carbon storage by vegetation in analyses of the global carbon budget. We discuss reasons for the differences between the new and earlier estimates, as well as implications for our understanding of the global carbon cycle.  相似文献   

15.
This paper analyses earning/wage differentials by height among coalmine workers in India. Our findings suggest that workers of above average height earn 9-17% more than their shorter counterparts and 6-13% more than average reference height. The results suggest that long-term investments in health human capital might ensure increase of labour productivity and thereby earnings, particularly in underdeveloped economies.  相似文献   

16.
A simple albedo model is presented for a tropical dry deciduous forest. The model is based on point observations of the solar radiation, leaf cover of the vegetation, precipitation and air temperature from 1981 to 1988 in western Mexico. Four main periods were noted: leafing, leafed, leaf-fall and leafless. During the leafed period the albedo was almost constant (0.16) but increased slowly in the leaf-fall period, at a rate of 0.0008/day, until its maximal values in the leafless period (0.24). During the leafing and leafed periods, the albedo decrease was a hyperbolic function of precipitation at a rate of 7.9 albedo percentage/mm. Albedo showed a linear regression on leaf cover and decreased at a rate of 0.119 albedo percentage per leaf cover percentage.  相似文献   

17.
An investigation was carried out to estimate soil respiration rate and its relationship with microbial population in natural tropical forest soil, deforested soil and deforested-and-cultivated soil of Orissa, India. Soil respiration measurements and microbial isolation were performed following standard procedures. Monthly variation of soil respiration was observed to be governed by soil moisture. Considering respiration as a function of microbial population a regression analysis was made. The microfungal population showed positive relationship with the rate of soil respiration. The study revealed that conversion of natural forest led to a reduction of soil microbes and rate of soil respiration. Considering the importance of the microbial component in soil, we conclude that the conversion of natural forests to different land uses leads to the loss of biological stability of the soil.  相似文献   

18.
This study evaluated whether herbivorous insects can be expected to have particular adaptations to withstand the harsh dry season in tropical dry forests (TDFs). We specifically investigated a possible escape in space, with herbivorous insects moving to the few evergreen trees that occur in this ecosystem; and escape in time, with herbivores presenting an increased nocturnal rather than diurnal activity during the dry season. We determined the variation in the free-feeding herbivorous insects (sap-sucking and leaf chewing) between seasons (beginning and middle of both rainy and dry seasons), plant phenological groups (deciduous and evergreen trees) and diel period (diurnal and nocturnal) in a Brazilian TDF. We sampled a total of 5827 insect herbivores in 72 flight-interception traps. Contrary to our expectations, we found a greater herbivore diversity during the dry season, with low species overlap among seasons. In the dry season, evergreen trees supported greater richness and abundance of herbivores as compared to deciduous trees. Insects were also more active at night during the dry season, but no diel differences in insect abundance were detected during the rainy season. These results indicate that the strategies used by insect herbivores to withstand the severe climatic conditions of TDFs during the dry season include both small-scale escape in space and time, with evergreen trees playing a key role in maintaining resident insect herbivore populations in TDFs. Relatively more nocturnal activity during the dry season may be related to the avoidance of harsh climatic conditions during the day. We suggest that the few evergreen tree species occurring in the TDF landscape should be especially targeted for protection in this threatened ecosystem, given their importance for insect conservation.  相似文献   

19.
20.
Seasonal patterns of photosynthesis and respiration of single leaves of four understory perennial herbs in deciduous forests were investigated in relation to their leaf growth and light conditions on the forest floor.Anemone flaccida shows rapid growth of leaf area and high rates of gross photosynthesis at light saturation (Psat) in its early stage of development. Its photosynthetic activity is restricted to a brief period of high light intensity before the closure of overstory canopies.Disporum smilacinum possesses light-photosynthesis curves of the shade-leaf type throughout its whole growing period. A shading experiment has shown that this plant is low-light adapted and can utilize weak light efficiently. The light-photosynthesis curve ofSyneilesis palmata shifts from the sun-leaf type to the shade-leaf type in response to the seasonal change of light regime on the forest floor. Evergreen leaves ofPyrola japonica have three year longevity, and light-photosynthesis curves of the shade-leaf type. They maintain some photosynthetic activity even in late autumn and winter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号