首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adaptive point mutation and amplification are induced responses to environmental stress, promoting genetic changes that can enhance survival. A specialized adaptive mutation mechanism has been documented in one Escherichia coli assay, but its enzymatic basis remained unclear. We report that the SOS-inducible, error-prone DNA polymerase (pol) IV, encoded by dinB, is required for adaptive point mutation in the E. coli lac operon. A nonpolar dinB mutation reduces adaptive mutation frequencies by 85% but does not affect adaptive amplification, growth-dependent mutation, or survival after oxidative or UV damage. We show that pol IV, together with the major replicase, pol III, can account for all adaptive point mutations at lac. The results identify a role for pol IV in inducible genetic change.  相似文献   

2.
"Adaptive" or "stationary-phase" mutation is a collection of apparent stress responses in which cells exposed to a growth-limiting environment generate genetic changes, some of which can allow resumption of rapid growth. In the well-characterized Lac system of Escherichia coli, reversions of a lac frameshift allele give rise to adaptive point mutations. Also in this system, adaptive gene amplification has been documented as a separate and parallel response that allows growth on lactose medium without acquisition of a compensatory frameshift mutation. In amplification, the DNA region containing the weakly functional lac allele becomes amplified to multiple copies, which produce sufficient enzyme activity to allow growth on the otherwise growth-limiting lactose medium. The amplifications are "adaptive" in that they occur after cells encounter the growth-limiting environment. Adaptive amplification is a reversible genetic change that allows adaptation and growth. It may be similar to chromosomal instability observed in the origins and progression of many cancers. We explore possible molecular mechanisms of adaptive amplification in the bacterial system and note parallels to chromosomal instability in other systems.  相似文献   

3.
Special mechanisms of mutation are induced in microbes under growth-limiting stress causing genetic instability, including occasional adaptive mutations that may speed evolution. Both the mutation mechanisms and their control by stress have remained elusive. We provide evidence that the molecular basis for stress-induced mutagenesis in an E. coli model is error-prone DNA double-strand break repair (DSBR). I-SceI-endonuclease-induced DSBs strongly activate stress-induced mutations near the DSB, but not globally. The same proteins are required as for cells without induced DSBs: DSBR proteins, DinB-error-prone polymerase, and the RpoS starvation-stress-response regulator. Mutation is promoted by homology between cut and uncut DNA molecules, supporting a homology-mediated DSBR mechanism. DSBs also promote gene amplification. Finally, DSBs activate mutation only during stationary phase/starvation but will during exponential growth if RpoS is expressed. Our findings reveal an RpoS-controlled switch from high-fidelity to mutagenic DSBR under stress. This limits genetic instability both in time and to localized genome regions, potentially important evolutionary strategies.  相似文献   

4.
5.
Evolutionary success of bacteria relies on the constant fine-tuning of their mutation rates, which optimizes their adaptability to constantly changing environmental conditions. When adaptation is limited by the mutation supply rate, under some conditions, natural selection favours increased mutation rates by acting on allelic variation of the genetic systems that control fidelity of DNA replication and repair. Mutator alleles are carried to high frequency through hitchhiking with the adaptive mutations they generate. However, when fitness gain no longer counterbalances the fitness loss due to continuous generation of deleterious mutations, natural selection favours reduction of mutation rates. Selection and counter-selection of high mutation rates depends on many factors: the number of mutations required for adaptation, the strength of mutator alleles, bacterial population size, competition with other strains, migration, and spatial and temporal environmental heterogeneity. Such modulations of mutation rates may also play a role in the evolution of antibiotic resistance.  相似文献   

6.
“Adaptive mutation” denotes a collection of processes in which cells respond to growth-limiting environments by producing compensatory mutants that grow well, apparently violating fundamental principles of evolution. In a well-studied model, starvation of stationary-phase lac Escherichia coli cells on lactose medium induces Lac+ revertants at higher frequencies than predicted by usual mutation models. These revertants carry either a compensatory frameshift mutation or a greater than 20-fold amplification of the leaky lac allele. A crucial distinction between alternative hypotheses for the mechanisms of adaptive mutation hinges on whether these amplification and frameshift mutation events are distinct, or whether amplification is a molecular intermediate, producing an intermediate cell type, in colonies on a pathway to frameshift mutation. The latter model allows the evolutionarily conservative idea of increased mutations (per cell) without increased mutation rate (by virtue of extra gene copies per cell), whereas the former requires an increase in mutation rate, potentially accelerating evolution. To resolve these models, we probed early events leading to rare adaptive mutations and report several results that show that amplification is not the precursor to frameshift mutation but rather is an independent adaptive outcome. (i) Using new high-resolution selection methods and stringent analysis of all cells in very young (micro)colonies (500–10,000 cells), we find that most mutant colonies contain no detectable lac-amplified cells, in contrast with previous reports. (ii) Analysis of nascent colonies, as young as the two-cell stage, revealed mutant Lac+ cells with no lac-amplified cells present. (iii) Stringent colony-fate experiments show that microcolonies of lac-amplified cells grow to form visible colonies of lac-amplified, not mutant, cells. (iv) Mutant cells do not overgrow lac-amplified cells in microcolonies fast enough to mask the lac-amplified cells. (v) lac-amplified cells are not SOS-induced, as was proposed to explain elevated mutation in a sequential model. (vi) Amplification, and not frameshift mutation, requires DNA polymerase I, demonstrating that mutation is separable from amplification, and also illuminating the amplification mechanism. We conclude that amplification and mutation are independent outcomes of adaptive genetic change. We suggest that the availability of alternative pathways for genetic/evolutionary adaptation and clonal expansion under stress may be exploited during processes ranging from the evolution of drug resistance to cancer progression.  相似文献   

7.
Adaptive mutation is a generic term for processes that allow individual cells of nonproliferating cell populations to acquire advantageous mutations and thereby to overcome the strong selective pressure of proliferation-limiting environmental conditions. Prerequisites for an occurrence of adaptive mutation are that the selective conditions are nonlethal and that a restart of proliferation may be accomplished by some genetic change in principle. The importance of adaptive mutation is derived from the assumption that it may, on the one hand, result in an accelerated evolution of microorganisms and, on the other, in multicellular organisms may contribute to a breakout of somatic cells from negative growth regulation, i.e., to cancerogenesis. Most information on adaptive mutation in eukaryotes has been gained with the budding yeast Saccharomyces cerevisiae. This review focuses comprehensively on adaptive mutation in this organism and summarizes our current understanding of this issue.  相似文献   

8.
Stress responses and genetic variation in bacteria   总被引:5,自引:0,他引:5  
Under stressful conditions mechanisms that increase genetic variation can bestow a selective advantage. Bacteria have several stress responses that provide ways in which mutation rates can be increased. These include the SOS response, the general stress response, the heat-shock response, and the stringent response, all of which impact the regulation of error-prone polymerases. Adaptive mutation appears to be process by which cells can respond to selective pressure specifically by producing mutations. In Escherichia coli strain FC40 adaptive mutation involves the following inducible components: (i) a recombination pathway that generates mutations; (ii) a DNA polymerase that synthesizes error-containing DNA; and (iii) stress responses that regulate cellular processes. In addition, a subpopulation of cells enters into a state of hypermutation, giving rise to about 10% of the single mutants and virtually all of the mutants with multiple mutations. These bacterial responses have implications for the development of cancer and other genetic disorders in higher organisms.  相似文献   

9.
Slechta ES  Liu J  Andersson DI  Roth JR 《Genetics》2002,161(3):945-956
In the genetic system of Cairns and Foster, a nongrowing population of an E. coli lac frameshift mutant appears to specifically accumulate Lac(+) revertants when starved on medium including lactose (adaptive mutation). This behavior has been attributed to stress-induced general mutagenesis in a subpopulation of starved cells (the hypermutable state model). We have suggested that, on the contrary, stress has no direct effect on mutability but favors only growth of cells that amplify their leaky mutant lac region (the amplification mutagenesis model). Selection enhances reversion primarily by increasing the mutant lac copy number within each developing clone on the selection plate. The observed general mutagenesis is attributed to a side effect of growth with an amplification-induction of SOS by DNA fragments released from a tandem array of lac copies. Here we show that the S. enterica version of the Cairns system shows SOS-dependent general mutagenesis and behaves in every way like the original E. coli system. In both systems, lac revertants are mutagenized during selection. Eliminating the 35-fold increase in mutation rate reduces revertant number only 2- to 4-fold. This discrepancy is due to continued growth of amplification cells until some clones manage to revert without mutagenesis solely by increasing their lac copy number. Reversion in the absence of mutagenesis is still dependent on RecA function, as expected if it depends on lac amplification (a recombination-dependent process). These observations support the amplification mutagenesis model.  相似文献   

10.
"Adaptive" or "stationary-phase" mutation is a collection of stress responses promoting mutations, some of which are advantageous. In 2000 and 2001, in Escherichia coli, adaptive gene amplification was documented, and a parallel adaptive point-mutation mechanism was linked to the error-prone DNA polymerase, DinB (pol IV). We suggest that DinB homologues may contribute to adaptive strategies of pathogens, including antigenic variation.  相似文献   

11.
ABSTRACT

Adaptive mutation is a generic term for processes that allow individual cells of nonproliferating cell populations to acquire advantageous mutations and thereby to overcome the strong selective pressure of proliferation-limiting environmental conditions. Prerequisites for an occurrence of adaptive mutation are that the selective conditions are nonlethal and that a restart of proliferation may be accomplished by some genetic change in principle. The importance of adaptive mutation is derived from the assumption that it may, on the one hand, result in an accelerated evolution of microorganisms and, on the other, in multicellular organisms may contribute to a breakout of somatic cells from negative growth regulation, i.e., to cancerogenesis. Most information on adaptive mutation in eukaryotes has been gained with the budding yeast Saccharomyces cerevisiae. This review focuses comprehensively on adaptive mutation in this organism and summarizes our current understanding of this issue.  相似文献   

12.
13.
Standing genetic variation is considered a major contributor to the adaptive potential of species. The low heritable genetic variation observed in self‐fertilizing populations has led to the hypothesis that species with this mating system would be less likely to adapt. However, a non‐negligible amount of cryptic genetic variation for polygenic traits, accumulated through negative linkage disequilibrium, could prove to be an important source of standing variation in self‐fertilizing species. To test this hypothesis, we simulated populations under stabilizing selection subjected to an environmental change. We demonstrate that, when the mutation rate is high (but realistic), selfing populations are better able to store genetic variance than outcrossing populations through genetic associations, notably due to the reduced effective recombination rate associated with predominant selfing. Following an environmental shift, this diversity can be partially remobilized, which increases the additive variance and adaptive potential of predominantly (but not completely) selfing populations. In such conditions, despite initially lower observed genetic variance, selfing populations adapt as readily as outcrossing ones within a few generations. For low mutation rates, purifying selection impedes the storage of diversity through genetic associations, in which case, as previously predicted, the lower genetic variance of selfing populations results in lower adaptability compared to their outcrossing counterparts. The population size and the mutation rate are the main parameters to consider, as they are the best predictors of the amount of stored diversity in selfing populations. Our results and their impact on our knowledge of adaptation under high selfing rates are discussed.  相似文献   

14.
Evolution hinges on the ability of organisms to adapt to their environment. A key regulator of adaptability is mutation rate, which must be balanced to maintain genome fidelity while permitting sufficient plasticity to cope with environmental changes. Multiple mechanisms govern an organism's mutation rate. Constitutive mechanisms include mutator alleles that drive global, permanent increases in mutation rates, but these changes are confined to the subpopulation that carries the mutator allele. Other mechanisms focus mutagenesis in time and space to improve the chances that adaptive mutations can spread through the population. For example, environmental stress can induce mechanisms that transiently relax the fidelity of DNA repair to bring about a temporary increase in mutation rates during times when an organism experiences a reduced fitness for its surroundings, as has been demonstrated for double-strand break repair in Escherichia coli. Still, other mechanisms control the spatial distribution of mutations by directing changes to especially mutable sequences in the genome. In eukaryotic cells, for example, the stress-sensitive chaperone Hsp90 can regulate the length of trinucleotide repeats to fine-tune gene function and can regulate the mobility of transposable elements to enable larger functional changes. Here, we review the regulation of mutation rate, with special emphasis on the roles of tandem repeats and environmental stress in genome evolution.  相似文献   

15.
DNA repair mechanisms fulfil a dual role, as they are essential for cell survival and genome maintenance. Here, we studied how cells regulate the interplay between DNA repair and mutation. We focused on the adaptive response that increases the resistance of Escherichia coli cells to DNA alkylation damage. Combination of single-molecule imaging and microfluidic-based single-cell microscopy showed that noise in the gene activation timing of the master regulator Ada is accurately propagated to generate a distinct subpopulation of cells in which all proteins of the adaptive response are essentially absent. Whereas genetic deletion of these proteins causes extreme sensitivity to alkylation stress, a temporary lack of expression is tolerated and increases genetic plasticity of the whole population. We demonstrated this by monitoring the dynamics of nascent DNA mismatches during alkylation stress as well as the frequency of fixed mutations that are generated by the distinct subpopulations of the adaptive response. We propose that stochastic modulation of DNA repair capacity by the adaptive response creates a viable hypermutable subpopulation of cells that acts as a source of genetic diversity in a clonal population.  相似文献   

16.
17.
C. Colby  S. M. Williams 《Genetics》1995,140(3):1129-1136
Based on recent studies in single-celled organisms, it has been argued that a fitness benefit associated with a mutation will increase the probability of that mutation occurring. This increase is independent of mutation rates at other loci and is called adaptive mutagenesis. We modeled the effect of adaptive mutagenesis on populations of haploid organisms with adaptive mutation rates ranging from 0 to 1 X 10(-5). Allele frequencies at the selected locus and a neutral linked locus were tracked. We also observed the amount of linkage disequilibrium during the selective sweep and the final heterozygosity after the sweep. The presence of adaptive mutagenesis increases the number of genetic backgrounds carrying the new fitter allele, making the outcomes more representative of the population before the selection. Therefore, more neutral genetic variation is preserved in simulations with adaptive mutagenesis than in those without it due to hitchhiking. Since adaptive mutagenesis is time-dependent, it can generate mutants when other mechanisms of mutation cannot. In addition, adaptive mutagenesis has the potential to confound both phylogeny construction and the detection of natural selection from patterns of nucleotide variation.  相似文献   

18.
The relationship between environment and mutation is complex [1]. Claims of Lamarkian mutation [2] have proved unfounded [3-5]; it is apparent, however, that the external environment can influence the generation of heritable variation, through either direct effects on DNA sequence [6] or DNA maintenance and copying mechanisms [7-10], or as a consequence of evolutionary processes [11-16]. The spectrum of mutational events subject to environmental influence is unknown [6] and precisely how environmental signals modulate mutation is unclear. Evidence from bacteria suggests that a transient recombination-dependent hypermutational state can be induced by starvation [5]. It is also apparent that changes in the mutability of specific loci can be influenced by alterations in DNA topology [10,17]. Here we describe a remarkable instance of adaptive evolution in Salmonella which is caused by a mutation that occurs in intermediate-strength osmotic environments. We show that the mutation is not 'directed' and describe its genetic basis. We also present compelling evidence in support of the hypothesis that the mutational event is constrained by signals transmitted from the external environment via changes in the activity of DNA gyrase.  相似文献   

19.
Genetic instability and DNA amplification in Streptomyces lividans 66.   总被引:18,自引:11,他引:7       下载免费PDF全文
Streptomyces lividans 66 exhibits genetic instability, involving sequential loss of resistance to chloramphenicol (Cams) and subsequent mutation of argG. Associated with this instability is the amplification of a 5.7-kilobase (kb) amplified DNA sequence (ADS). We have characterized a second, independent pathway of genetic instability, involving sequential loss of resistance to tetracycline (Tets) followed by mutation in nitrogen assimilation (Ntr). We detected DNA amplification in many of these mutant strains, as well as other reiterations coresident with the 5.7-kb ADS in Cams Arg mutants. However, in contrast to the 5.7-kb ADS, none of the novel elements were observed to amplify at high frequency. The mutation of argG is due to a deletion, one endpoint of which is defined by the 5.7-kb ADS. This amplification derives from a structure, the tandemly duplicated amplifiable unit of DNA (AUD), present in the wild-type genome. We found that progenitor strains containing just a single-copy AUD failed to reproducibly generate amplification of this element in Cams argG mutants, and DNA deletion endpoints proximal to the element were found to be unspecific. These results suggest that a duplicated AUD structure is required for high-frequency amplification and that this reiteration can subsequently buffer the extent of deletion formation in the relevant chromosomal region.  相似文献   

20.
Stress-induced mutagenesis in bacteria   总被引:8,自引:0,他引:8  
Bacteria spend their lives buffeted by changing environmental conditions. To adapt to and survive these stresses, bacteria have global response systems that result in sweeping changes in gene expression and cellular metabolism. These responses are controlled by master regulators, which include: alternative sigma factors, such as RpoS and RpoH; small molecule effectors, such as ppGpp; gene repressors such as LexA; and, inorganic molecules, such as polyphosphate. The response pathways extensively overlap and are induced to various extents by the same environmental stresses. These stresses include nutritional deprivation, DNA damage, temperature shift, and exposure to antibiotics. All of these global stress responses include functions that can increase genetic variability. In particular, up-regulation and activation of error-prone DNA polymerases, down-regulation of error-correcting enzymes, and movement of mobile genetic elements are common features of several stress responses. The result is that under a variety of stressful conditions, bacteria are induced for genetic change. This transient mutator state may be important for adaptive evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号